

A Hybrid-Membership Latent Distance Model

Nikolaos Nakis Abdulkadir Çelikkanat Morten Mørup Section for Cognitive Systems, Technical University of Denmark

Graph Representation Learning (GRL)

Network Embeddings: Express and predict intrinsic structures of complex networks

Poisson Latent Distance Model¹²

• Poisson Rate:
$$\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - ||\mathbf{z}_i - \mathbf{z}_j||_2\right)$$

¹Hoff, P.D.: Bilinear mixed-effects models for dyadic data. JASA 100(469), 286–295 (2005) ²Peter D. Hoff et al, Latent Space Approaches to Social Network Analysis. (2002)

Poisson Latent Distance Model¹²

- Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j ||\mathbf{z}_i \mathbf{z}_j||_2\right)$
- Log-Likelihood: $\log P(Y|\lambda)) = \sum_{\substack{i < j: y_{ij} = 1 \\ \text{Link Term } \mathcal{O}(N)}} \log(\lambda_{ij}) \sum_{\substack{i < j \\ \text{Non-Link Term } \mathcal{O}(N^2)}} \lambda_{ij}$

¹Hoff, P.D.: Bilinear mixed-effects models for dyadic data. JASA 100(469), 286–295 (2005) ²Peter D. Hoff et al, Latent Space Approaches to Social Network Analysis. (2002)

Latent Space Models

Poisson Latent Distance Model¹²

• Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - ||\mathbf{z}_i - \mathbf{z}_j||_2\right)$ • Log-Likelihood: $\log P(Y|\lambda) = \sum_{i < j: y_{ij} = 1} \log(\lambda_{ij}) - \sum_{i < j} \lambda_{ij}$

Homophily and Transitivity:

Link Term $\mathcal{O}(N)$

¹Hoff, P.D.: Bilinear mixed-effects models for dyadic data. JASA 100(469), 286–295 (2005) ²Peter D. Hoff et al, Latent Space Approaches to Social Network Analysis. (2002)

Non-Link Term $\mathcal{O}(N^2)$

Latent Space Models

Poisson Latent Distance Model¹²

- Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j ||\mathbf{z}_i \mathbf{z}_j||_2\right)$
- Log-Likelihood: $\log P(Y|\lambda)) = \sum_{\substack{i < j: y_{ij} = 1 \\ \text{Link Term } \mathcal{O}(N)}} \log (\lambda_{ij}) \sum_{\substack{i < j \\ \text{Non-Link Term } \mathcal{O}(N^2)}} \lambda_{ij}$

Homophily and Transitivity:

Similar Nodes are positioned closer in space

¹Hoff, P.D.: Bilinear mixed-effects models for dyadic data. JASA 100(469), 286–295 (2005) ²Peter D. Hoff et al, Latent Space Approaches to Social Network Analysis. (2002)

A small example

$$d_{z_i,z_k} \leq ||z_j - z_i||_2 + ||z_k - z_j||_2$$

Transitivity

Figure 1: Projecting a small social network

Latent Distance Models — Identifiability

The LDM embeddings are invariant under translation, rotation and reflection operations $^{\rm 3}$

8

Background — Simplexes

- A *D*-simplex is a convex polytope in ℝ^D and it is always the convex hull of *D* + 1 affinely independent points
- Standard D-simplex:

$$\Delta^{D} = \left\{ (w_{1}, \dots, w_{D+1} | \sum_{i=1}^{D+1} w_{i} = 1 \text{ and } w_{i} \ge 0 \text{ for } i = 1, \dots, D+1 \right\}$$

Figure 5: The standard 2-simplex in \mathbb{R}^3 for $\delta = 1$

Background — Non-Negative Matrix Factorization

- Non-Negative Matrix Factorization (NMF): Factorization of a non-negative matrix V ∈ ℝ^{N×K} into two (usually) matrices W ∈ ℝ^{N×D} and H ∈ ℝ^{D×K}, also non-negative.
- NMF techniques: structure retrieval and interpretable part-based representations⁴, clustering properties

Figure 6: Non-symmetric NMF

⁴Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

DTU

Background — Non-Negative Matrix Factorization

• Symmetric Non-Negative Matrix Factorization

Figure 7: Symmetric NMF

Hybrid Membership-Latent Distance Model (HM-LDM)

• Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - \delta^p \cdot ||\mathbf{w}_i - \mathbf{w}_j||_2^p\right)$, where the node embeddings $\mathbf{w}_i \in [0, 1]^{D+1}$ and $\sum_{d=1}^{D+1} w_{id} = 1$, $\delta \in \mathbb{R}_+$, $p \in \{1, 2\}$ and $\gamma_i \in \mathbb{R}$ denotes the node-specific random-effects.

Hybrid Membership-Latent Distance Model (HM-LDM)

• Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - \delta^p \cdot ||\mathbf{w}_i - \mathbf{w}_j||_2^p\right)$, where the node embeddings $\mathbf{w}_i \in [0, 1]^{D+1}$ and $\sum_{d=1}^{D+1} w_{id} = 1$, $\delta \in \mathbb{R}_+$, $p \in \{1, 2\}$ and $\gamma_i \in \mathbb{R}$ denotes the node-specific random-effects.

• Log-Likelihood:
$$\log P(Y|\lambda) = \sum_{\substack{i < j: y_{ij} = 1 \\ \text{Link Term } \mathcal{O}(N)}} \log(\lambda_{ij}) - \sum_{\substack{i < j \\ \text{Non-Link Term } \mathcal{O}(N^2)}} \lambda_{ij}$$

Hybrid Membership-Latent Distance Model (HM-LDM)

• Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - \delta^p \cdot ||\mathbf{w}_i - \mathbf{w}_j||_2^p\right)$, where the node embeddings $\mathbf{w}_i \in [0, 1]^{D+1}$ and $\sum_{d=1}^{D+1} w_{id} = 1$, $\delta \in \mathbb{R}_+$, $p \in \{1, 2\}$ and $\gamma_i \in \mathbb{R}$ denotes the node-specific random-effects.

• Log-Likelihood:
$$\log P(Y|\lambda) = \sum_{\substack{i < j: y_{ij} = 1 \\ \text{Link Term } \mathcal{O}(N)}} \log(\lambda_{ij}) - \sum_{\substack{i < j \\ \text{Non-Link Term } \mathcal{O}(N^2)}} \lambda_{ij}$$

Constrain the embeddings on the D-simplex

Hybrid Membership-Latent Distance Model (HM-LDM)

• Poisson Rate: $\lambda_{ij} = \exp\left(\gamma_i + \gamma_j - \delta^p \cdot ||\mathbf{w}_i - \mathbf{w}_j||_2^p\right)$, where the node embeddings $\mathbf{w}_i \in [0, 1]^{D+1}$ and $\sum_{d=1}^{D+1} w_{id} = 1$, $\delta \in \mathbb{R}_+$, $p \in \{1, 2\}$ and $\gamma_i \in \mathbb{R}$ denotes the node-specific random-effects.

• Log-Likelihood:
$$\log P(Y|\lambda) = \sum_{\substack{i < j: y_{ij} = 1 \\ \text{Link Term } \mathcal{O}(N)}} \log(\lambda_{ij}) - \sum_{\substack{i < j \\ \text{Non-Link Term } \mathcal{O}(N^2)}} \lambda_{ij}$$

Constrain the embeddings on the *D*-simplex Control the simplex volume by the δ value

Identifiability of the embedding solution

Definition (Identifiability)

An embedding matrix **W** whose rows indicating the corresponding node representations is called an *identifiable solution up to a permutation* if it holds $\widetilde{W} = WP$ for a permutation **P** and a solution $\widetilde{W} \neq W$.

Road to identifiability

Figure 8: A 2-dimensional latent space with the 2-simplex given as the green and yellow triangles, the blue points denote embedding positions of the LDM and δ is the simplex size.

DTU

Nodes residing in the simplex corners

Definition (Community champion)

A node for a latent community is called *champion* if it belongs to the community (simplex corner) while forming a binary unit vector.

Relation to NMF — HM-LDM (p = 2)

- Re-parameterization of log rate by $\gamma_i + \gamma_j - \delta^2 \cdot ||\mathbf{w}_i - \mathbf{w}_j||_2^2 = \tilde{\gamma}_i + \tilde{\gamma}_j + 2\delta^2 \cdot (\mathbf{w}_i \mathbf{w}_j^{\top})$
- $\mathbf{W}\mathbf{W}^{\!\top}$ defines a symmetric NMF problem
 - identifiable and unique factorization (up to permutation invariance) when W is full-rank and at least one node resides solely in each simplex corner, ensuring separability ^{5 6}.

⁵Huang, K. et al : Non-negative matrix factorization revis- ited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process 62(1), 211–224 (2014) ⁶Mao, X. et al: On mixed memberships and symmetric non- negative matrix factorizations. In: ICML, vol. 70 (2017)

Scalable inference — Unbiased likelihood estimators

Full network containing the set of nodes: $\{0, 1, 2, 3, 5, 6, 7\}$

Random Sampling a set of nodes, e.g. $\{1,3,5,6\}$

$$\log P(Y|\lambda)) = \underbrace{\sum_{i < j: y_{ij} = 1} \log(\lambda_{ij})}_{\text{Link Term } \mathcal{O}(S)} - \underbrace{\sum_{i < j} \lambda_{ij}}_{\text{Non-Link Term } \mathcal{O}(S^2)} \text{ with } i, j \in S$$

Downstream tasks: link prediction

Downstream tasks: link prediction

Can we predict the missing (removed) links?

Downstream tasks: community detection

Community A Community B

Downstream tasks: community detection

Can we infer the community labels?

For our experiments we consider eight networks ⁷⁸

Table 1: Network statistics; $|\mathcal{V}|$: # Nodes, $|\mathcal{E}|$: # Edges, $|\mathcal{K}|$: # Communities.

	AstroPh	GrQc	Facebook	HepTh	Hamilton	Amherst	Rochester	Mich
$ \mathcal{V} $	17,903	5,242	4,039	8,638	2,118	2,021	4,145	2,933
$ \mathcal{E} $	197,031	14,496	88,234	24,827	87,486	87,496	145,305	54,903
$ \mathcal{K} $	-	-	-	-	15	15	19	13

 ⁷Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014)
⁸Mucha, P., Porter, M.: Social structure of facebook networks. Physica A: Statistical Mechanics and its Applications 391, 4165–4180 (2012)

Experiments — Community champions and δ values

Figure 9: Total community champions (%) in terms of δ^2 across dimensions for HM-LDM. Top row: p = 2. Bottom row p = 1.

Experiments — Link prediction and δ values

Figure 10: AUC-ROC scores as a function of δ^2 across dimensions for HM-LDM. Top row: p = 2. Bottom row p = 1.

Experiments — Identifiable HM-LDM link prediction vs baselines

	AstroPh				GrQc			Facebook			HepTh		
Dimension (D)	8	16	32	8	16	32	8	16	32	8	16	32	
DEEPWALK	.945	.950	.952	.919	.916	.929	.986	.986	.984	.874	.867	.873	
NODE2VEC	.950	.962	.957	.897	.913	.930	.988	.988	.987	.881	.882	.881	
LINE	.909	.938	.947	.920	.925	.919	.981	.987	.983	.873	.886	.882	
NETMF	.813	.823	.839	.860	.866	.877	.935	.963	.971	.792	.806	.821	
NETSMF	.891	.901	.919	.837	.858	.886	.975	.981	.985	.809	.822	.836	
LOUVAINNE	.813	.811	.819	.868	.875	.873	.958	.961	.963	.874	.867	.873	
ProNE	.907	.929	.947	.885	.911	.921	.971	.982	.987	.827	.846	.859	
NNSED	.861	.882	.891	.792	.808.	.828	.908	.927	.935	.756	.779	.796	
MNMF	.893	.925	.943	.911	.928	.937	.965	.978	.982	.857	.880	.891	
BIGCLAM	.500	.723	.810	.752	.769	.780	.744	.722	.647	.776	.700	.748	
SYMMNMF	.767	.779	.800	.729	.772	.835	.933	.942	.951	.696	.727	.766	
HM-LDM ($p = 1$)	.956	.952	.952	.944	.948	.951	.982	.979	.974	.916	.921	.924	
HM-LDM ($p = 2$)	.972	.973	.963	.940	.942	<u>.946</u>	.992	.993	.993	.908	<u>.910</u>	<u>.911</u>	

Table 2: AUC-ROC scores for varying representation sizes.

Experiments — Community detection vs baselines

Table 3: Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) scores for networks with ground-truth communities, setting $\delta = 1$.

	Amherst		Roch	ester	М	ich	Hamilton		
Metric	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI	
DEEPWALK	.498	.347	.348	.205	.207	.157	.447	.303	
NODE2VEC	.535	.375	.364	.223	.217	.161	.481	.348	
LINE	.549	.452	.365	.217	.249	.192	.499	.411	
NETMF	.491	.330	.377	.243	.237	.136	.456	.297	
NETSMF	.562	.408	.381	.228	.242	.169	.494	.391	
LOUVAINNE	.562	.395	.347	.204	.175	.114	.475	.334	
ProNE	.536	.443	.356	.312	.229	.200	.478	.396	
NNSED	.295	.243	.168	.116	.064	.035	.335	.285	
MNMF	.542	.362	.324	.171	.188	.102	.466	.287	
BIGCLAM	.091	.066	.028	.022	.024	.015	.053	.041	
SYMMNMF	.596	.397	.308	.175	.207	.088	.437	.341	
HM-LDM(p = 1)	.562	.502	.400	.392	.228	.205	.527	.485	
HM-LDM(p = 2)	.539	.506	<u>.384</u>	<u>.373</u>	.217	.183	.507	.504	

The extracted identifiable node embeddings convey information about (latent) community memberships

Experiments — Latent community structures

(a) GrQc (p = 2) (b) HepTh (p = 2) (c) GrQc (p = 1) (d) HepTh (p = 1)

Figure 11: Ordered adjacency matrices based on the memberships of a D = 16 dimensional HM-LDM with δ values ensuring identifiability.

Comparison with the vanilla LDM

Table 4: AUC-ROC HM-LDM and LDM-RE comparison for the link prediction task.

	AstroPh		GrQc			Facebook			HepTh			
Dimension (D)	8	16	32	8	16	32	8	16	32	8	16	32
LDM-RE	.973	.974	.979	.949	.952	.954	.993	.994	.992	.920	.923	.923
HM-LDM($p = 1, \delta^2 = identifiable$)	.956	.952	.952	.944	.948	.951	.982	.979	.974	.916	.921	.924
HM-LDM($p = 1, \delta^2 = 10^3$)	.967	.967	.965	.956	.955	.951	.985	.986	.987	.932	.931	.926
$LDM-Re-(\ell^2)^2$.979	.978	.976	.944	.944	.945	.990	.990	.991	.913	.912	.909
HM-LDM($p = 2, \delta^2 = identifiable$)	.972	.973	.963	.940	.942	.946	.992	.993	.993	.908	.910	.911
HM-LDM($p=2,\delta^2=10^3$)	.984	.983	.980	.948	.946	.946	.991	.991	.992	.920	.918	.913

Table 5: HM-LDM and LDM-RE comparison for the clustering task.

	Amherst		Rochester		Mich		Han	nilton
Metric		ARI	NMI	ARI	NMI	ARI	NMI	ARI
LDM-RE	.548	.366	.391	.212	.230	.132	.491	.320
HM-LDM($p = 1, \delta^2 = \text{identifiable}$)	.562	.502	.400	.392	.228	.205	.527	.485
HM-LDM($p = 1, \delta^2 = 10^3$)	.439	.386	.308	.303	.176	.133	.405	.377
$\label{eq:LDM-RE-} \begin{split} & LDM-RE-(\ell^2)^2 \\ & HM-LDM(p=2,\delta^2=identifiable) \\ & HM-LDM(p=2,\delta^2=10^3) \end{split}$.546	.370	.393	.211	.231	.137	.497	.327
	.539	.506	.384	.373	.217	.183	.507	.504
	.240	.133	.206	.119	.116	.056	.232	.209

Conclusion

- · Constrain LDMs to the simplex without loss of expressive power
- Reduced simplex: unique representations, ultimately resulting in hard clustering of nodes to communities
- Combination of the important network characteristics of homophily and transitivity with latent community detection
- Enabling explicit control of soft and hard assignment through the volume of the induced simplex

Thank you!