Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning

Abdulkadir Çelikkanat, Andres R. Masegosa, Thomas D. Nielsen

Ideally

Extract a genome for each bacteria in the sample

- ~ 50,000 prokaryotic species in the genome databases
- Estimates of millions to billions or even trillions of species.

Reality

Recreate genomes of very similar organisms using available information

Introduction

Metagenomic binning

-
- 2. $r_i \cdots r_{i+k-2} = r_j \cdots r_{j+k-2}$ and $r_g \cdots r_{g+k-2} = r_h \cdots r_{h+k-2}$ for some indices $1 \leq i < g < j < h \leq \ell - k + 2$ where $r_{i+k-1} \cdots r_{g-1} \neq r_{j+k-1} \cdots r_{h-1}$.
- 3. $r_i \cdots r_{i+k-2} = r_j \cdots r_{j+k-2} = r_h \cdots r_{h+k-2}$ for some indices $1 \le i < j < k$ $h \leq \ell - k + 2$ where $r_{i+k-1} \cdots r_{j-1} \neq r_{j+k-1} \cdots r_{h-1}$.
- *Identifiable reads* can be uniquely reconstructed from their k-mer profile.
- Sequencing a complex microbial sample using current DNA sequencing technologies rarely produces full DNA sequences, but rather a mixture of DNA fragments (called **reads**) of the microbes present in the sample.
- In order to recover the full microbial genomes, a subsequent binning/clustering step is performed, where individual DNA fragments are clustered together according to their genomic origins.

Metagenomics Binning Problem

Problem Definition. Let $\mathcal{R} \subset \Sigma^{+}$ be a finite set of reads with a genome mapping function ℓ where $\Sigma = \{A, C, T, G\}$. For a given threshold value $\gamma \in \mathbb{R}^+$, the objective is to learn an embedding function $\mathcal{E}: \mathcal{R} \to \mathbb{R}^d$ that embeds reads into a low-dimensional metric space (X, d_X) , usually a Euclidean space, such that $d_{\mathsf{X}}(\mathcal{E}(\mathbf{r}), \mathcal{E}(\mathbf{q})) \leq \gamma$ if and only if $\ell(\mathbf{r}) = \ell(\mathbf{q})$ for all reads $\mathbf{r}, \mathbf{q} \in \mathcal{R}$ where $d \ll |\mathcal{R}|$.

Learning latent representations of reads

Identifiable reads

CTGCTCGCCCTTGGTCGGAATGCA

Theorem. Let r be a read of length ℓ . There exists no other distinct read having the same k -mer profile if and only if it does not satisfy any of the following conditions: 1. $r_1 \cdots r_{k-1} = r_{\ell-k-2} \cdots r_{\ell}$ and $r_i \neq r_1$ for some $1 < i < \ell-k-2$.

Lipschitz equivalent spaces.

Proposition. Let $M_1 = (\aleph_\ell, d_\mathcal{H})$ and $M_2 = (\mathbb{N}^{|\Sigma^k|}, \| \cdot \|_1)$ be the metric spaces denoting the set of identifiable reads and their corresponding k -mer profiles equipped with edit and ℓ_1 distances, respectively. The k-mer profile function, $c: M_1 \to M_2$, mapping given any read, r, to its corresponding k-mer profile, $c_{\mathbf{r}} := c(\mathbf{r})$, is a Lipschitz equivalence, i.e. it satisfies

$$
\forall \mathbf{r}, \mathbf{q} \in \Sigma^{\ell} \ \alpha_l d_{\mathcal{H}}(\mathbf{r}, \mathbf{q}) \le ||c_{\mathbf{r}} - c_{\mathbf{q}}||
$$

for $\alpha_l = 1/\ell$ and $\alpha_u = k|\Sigma|^k$, so M_1 and M_2 are Lipschitz equivalent.

k-mer profile: First, consider the definition of k-mer profiles:

$$
\mathcal{E}_{\text{kmer}}(\mathbf{r}) := \sum_{\mathbf{x} \in \Sigma^{\mathbf{k}}}
$$

where z_x represents the canonical basis vector.

k-mers are not independent!

• $o_{x,y}$ indicates the number of average co-appearances of k-mers i x and y per read within a window size ω

Non-linear read embeddings

Experiments

This work was supported by a research grant (VIL50093) from

