Piecewise-Velocity Model for Learning Continuous-time Dynamic Node Representations

Graph representation learning (GRL) aims to encode the structure of a given network into low-dimensional vectors.

Applications: classification, community detection and link prediction.

In this work:

- We propose a novel scalable GRL method to flexibly learn **continuoustime dynamic node representations**.
- It balances the trade-off between the smoothness of node trajectories and model capacity accounting for the temporal evolution.
- It can embed nodes accurately in very low dimensional spaces (D=2).
- We show that it outperforms well-known baseline methods.

Abdulkadir Çelikkanat, Nikolaos Nakis, Morten Mørup

Illustrative comparison of the ground-truth embeddings, the adjacency matrices constructed based on aggregating the links within the intervals and learned node representations.

Introduction

Network reconstruction

 $-1)$

Network completion

Network prediction

Proposed Approach

Problem Formulation

Objective. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a continuous-time dynamic network and λ^* $V^2 \times \mathcal{I}_T \longrightarrow \mathbb{R}$ be an unknown intensity function of a nonhomogeneous Poisson point process. For a given metric space (X, d_X) , our purpose is to learn a function or representation $\mathbf{r} : \mathcal{V} \times \mathcal{I}_T \to \mathsf{X}$ satisfying

$$
\frac{1}{(t_u-t_l)}\int_{t_l}^{t_u}\psi^+\Big(d_{\mathsf{X}}\big(\mathbf{r}(i,t),\mathbf{r}(j,t)\big)\Big)\,dt\approx\frac{1}{(t_u-t_l)}\int_{t_l}^{t_u}\mathsf{\lambda}^*(i,j,t)dt
$$

for a continuous function $\psi^+ : \mathbb{R} \to \mathbb{R}^+$ for all $(i, j) \in \mathcal{V}^2$ pairs, and for every interval $[t_l,t_u] \subseteq \mathcal{I}_T$.

Nonhomogeneous Poisson Point Process

- We assume that the number of links follows a Nonhomogeneous Poisson Point Process with intensity function $\lambda_{ij}(t)$ on the time interval $[t_l, t_u)$.
- Then, the log-likelihood function can be written by

$$
\mathcal{L}(\Omega) := \log p(\mathcal{G}|\Omega) = \sum_{\substack{i < j \\ i,j \in \mathcal{V}}} \left(\sum_{e_{ij} \in \varepsilon_{ij}} \log \lambda_{ij}(e_{ij}) - \int_0^T \lambda_{ij}(t) dt \right)
$$

where $\mathcal{E}_{i,j} \subseteq \mathcal{E}[0,T]$ is the set of links of (i,j) -pair on the timeline $[0,T]$, and $\Omega = {\lambda_{ij}}_{1 \leq i \leq j \leq N}$ is the set of intensity functions.

PiVeM: Piecewise-Velocity Model

We learn continuous-time node representations by defining the intensity function by

$$
\lambda_{ij}(t) := \exp\left(\beta_i + \beta_j - ||\mathbf{r}_i(t) - \mathbf{r}_j(t)||^2\right)
$$

where $r_i(t) \in \mathbb{R}^D$ and $\beta_i \in \mathbb{R}$ denote the **embedding vector** at time t and the **bias term** of node $i \in \mathcal{V}$, respectively.

We define the representation of node $i \in \mathcal{V}$ at time $t \in [0, T]$ as follows:

$$
\mathbf{r}_i(t) := \mathbf{x}_i^{(0)} + \Delta_B \mathbf{v}_i^{(1)} + \Delta_B \mathbf{v}_i^{(2)} + \cdots + (t \mod(\Delta_B)) \mathbf{v}_i^{\left(\lfloor t/\Delta_B \rfloor + \right)}
$$

where $\mathbf{x}_i^{(0)}$ is the initial position, $\mathbf{v}_i^{(b)}$ the velocity for bin $b \in \{1, ..., B\}$ and Δ_B is the bin width.

Prior probability

We suppose that $\text{vect}(\mathbf{x}^{(0)}) \oplus \text{vect}(\mathbf{v}) \sim \mathcal{N}(\mathbf{0}, \Sigma)$ where $\Sigma := \lambda^2(\sigma_{\Sigma}^2 \mathbf{I} + \mathbf{K})$ is the covariance matrix with a scaling factor λ . $K := B \otimes C \otimes D$ accounts for temporal-, node-, and dimension specific covariance structures. We can express our objective relying on the piecewise velocities with the prior by:

$$
\hat{\Omega} = \arg \max_{\Omega} \sum_{\substack{i < j \\ i,j \in \mathcal{V}}} \left(\sum_{e_{ij} \in \mathcal{E}_{ij}} \log \lambda_{ij}(e_{ij}) - \int_0^T \lambda_{ij}(t) dt \right) + \log \mathcal{N} \left(\left[\begin{array}{c} \mathbf{x}^{(i)} \\ \mathbf{v} \end{array} \right] \right)
$$

Experiments

Influence of the model hyperparameters.

$|\mathcal{V}|$ \overline{M} $|\mathcal{E}|$ $|\mathcal{E}_{ii}|$ 100 4,889 180,658 124 $Synthetic(\mu)$ 100 Synthetic(π) 3,009 22.477 32 College 1,899 13,838 59,835 184 217 Contacts 4.274 78.249 1.302 Hypertext 113 2,196 20,818 1,281 Email 986 16,064 4,992 332.334 899 7,036 171 Forum 33,686

Datasets

SCAN ME

For the implementation, datasets, animations and other details, please visit the address: https://abdcelikkanat.github.io/projects/pivem/

