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ABSTRACT

SAMPLING METHODS FOR RANDOM SIMPLE AND

BIPARTITE GRAPHS WITH PRESCRIBED DEGREE

SEQUENCES

Complex networks have attracted considerable attention in recent years with the

increase in the studies of real systems modeled by graphs such as biological and social

networks. One problem in this domain is the generation of typical instances from a

collection of graphs admitting certain properties, such as the degree sequence or the

clustering coefficient. In this thesis, the sampling problem is addressed for simple and

bipartite graphs with a given fixed degree sequence.

A natural Markov chain method relying on the edge switching steps is introduced

for simple graphs. Due to the difficulties of directly obtaining samples from the uniform

distribution over the set of possible realizations of a given degree sequence, algorithms

using importance sampling and sequential importance sampling techniques are inves-

tigated for simple and bipartite graphs. Here, we focus on algorithms proposed by

Blitzstein and Diaconis [1] and Chen et al. [2]. A new uniform sampling and exact

counting algorithm is proposed for simple graphs by adapting, and transforming the

method suggested by Miller and Harrison [3] for bipartite graphs. Lastly, applications

of the algorithms are illustrated in several examples such as hypothesis testing, network

analysis and graph enumeration.
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ÖZET

DERECE DİZİLİ RASTGELE BASİT VE İKİ PARÇALI

ÇİZGELER İÇİN ÖRNEKLEME YÖNTEMLERİ

Karmaşık ağlar son yıllarda biyolojik ve sosyal ağlar gibi çizgelerle modellenen

gerçek sistemlerdeki çalışmaların artmasıyla oldukça dikkat çekti. Bu alandaki bir

problem de derece dizileri veya kümelenme katsayısı gibi belirli özellikleri sağlayan çizge

topluluğundan tipik örneklerin üretilmesidir. Bu tezde, basit ve iki parçalı çizgeler için

örnekleme problemi ele alınmıştır.

Kenar geçiş adımlarına dayanan doğal bir Markov zinciri yöntemi basit çizgeler

için sunulmuştur. Belirli bir derece dizisinin olası gerçekleşimleri üzerine doğrudan

tekdüze dağılımdan örneklerin elde edilmesinin zorluklarından dolayı, basit ve iki parçalı

çizgeler için önem örnekleme ve sıralı önem örnekleme tekniklerini kullanan algorit-

malar araştırılmıştır. Burada, Blitzstein ve Diaconis [1] ve Chen ve arkadaşları [2]

tarafından sunulan algoritmalar üzerinde duruyoruz. İki parçalı çizgeler için Miller

ve Harrison [3] tarafından önerilen bir yöntemi basit çizgeler için adapte ederek ve

dönüştürerek yeni bir tekdüze örnekleme ve tam sayma algoritması önerilmiştir. Son

olarak algoritmaların uygulamaları hipotez testi, ağ analizi ve grafik sayımı gibi çeşitli

örneklerde gösterilmiştir.
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1. INTRODUCTION

A graph is referred to as random if it is chosen from a certain collection of graphs

according to a probability law. Random graphs have taken considerable attention

from various fields from sociology to computer science to biology [4], and they are

used as a model for many real-world networks to study their properties under certain

constraints and assumptions. In recent years, many studies have been conducted on the

generation of graphs satisfying a given degree sequence since it is one of the prominent

characteristics of a graph affecting its structure. For instance, the graph in Figure

1.1 illustrates relationships between a group of freshman students. Each vertex in the

graph corresponds to a student and a link between a pair of students indicates that

they are in a friendly relationship.

Figure 1.1. Friendship Network of Freshman Students

Although the original data [5, 6] were collected at seven different time points by

asking students to evaluate their relationships with others, their assessments at the

last time step is considered to construct the graph. A connection between a pair of

students is placed, only if one of them considers their relationships friendly, and the

degree sequence of this particular network is

(2, 5, 7, 4, 14, 4, 4, 14, 3, 5, 7, 9, 6, 6, 4, 8, 6, 7, 4, 4, 7, 3, 4, 7).
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For a given degree sequence, an immediate and natural question is that whether

there are other graphs with the same degree sequence. If there exists such a graph,

the degree sequence may not be peculiar to it since there may exist a large num-

ber of graphs sharing the same degree sequence (Figure 2.3). For instance, there are

1.028.330.021.523.219.123.740.586.856.603.341.415.076.2361 labeled simple graphs sat-

isfying the degree sequence of the friendship network above. Hence, effective sampling

of graphs from such a large set is not simple, and it is of great importance in many

applications. The thesis aims to investigate different approaches proposed for genera-

tion of simple and bipartite graphs satisfying the given degree sequence, and proposes

a uniform sampling and an exact counting algorithm for simple graphs.

1.1. Historical Background

The basis of random graphs dates back to the late 1950s with the study of famous

mathematicians Erdös and Rényi [7]. They initiated a systematic study of random

graphs with the papers published between the years 1959 and 1968, and introduced a

random graph model named Erdös-Rényi (ER). The notation Gn,m is used to represent

the model with the parameters: n and m where n is the number of vertices and m is

the number of edges. In the model, a graph is uniformly chosen at random from the

set of all graphs having n vertices and m edges. In 1959, Gilbert [8] independently

introduced another procedure, named Gilbert model Gn,p where connections between

pair of vertices are determined with a probability p. Although a similar study was

carried out earlier by Ray Solomonoff and Anatol Rapoport in 1951 [9], their work

did not draw much attention at that time. By setting m to
(
n
2

)
p, it can be observed

that the models Gn,p and Gn,m behaves similarly as n increases by the law of large

numbers. The Gn,p model is more commonly used since dealing with the Gn,m is not

much practical in mathematical analyses.

1In our knowledge, we are the first one to be able to compute this number exactly by using the
algorithm that we have developed in Section (4.2.2). Our calculation closely matches the estimated
result found by using the method proposed by Blitzstein and Diaconis [1].
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Each vertex degree in the Gn,p model follows binomial distribution with parameters

n − 1 and p since a vertex can be connected to at most n − 1 vertices, and it can be

approximated by a Poisson distribution for large n values.

However, Erdös-Rényi (ER) model is not appropriate to capture various proper-

ties of real-world networks. For instance, in many social networks, individuals tend to

cluster into smaller groups relative to the size of the whole network. Every individual

in the society actually is a member of a certain community consisting of persons mostly

knowing each other and sharing common areas of interests. The property of a graph,

clustering coefficient, measures the extent to one’s acquaintances are also acquaintances

of each other, and many social networks exhibit high clustering coefficient contrary to

the Erdös-Rényi (ER) random graphs. Moreover, any two persons who seem to be very

distant from each other in the network can be actually connected with a short chain

of people. Various studies like Milgram’s experiment demonstrated that a person can

reach another one in the network by means of a path involving around six people, and

this phenomenon is generally referred to as six degrees of separation rule. Therefore,

many real-world networks have a small average shortest path length. The networks

combining these structural features are called as small-world networks. In 1998, Watts

and Strogatz [10] proposed their random graph model, named Watts-Strogatz (WS)

model [10], in order to construct and study small-world networks.

In the following years, it was noticed that Watts-Strogatz model was not sufficient

to represent numerous real-world networks. Albert-László Barabási and his student

Réka Albert showed that many complex networks such as World Wide Web, protein-

protein interactions exhibit power-law distributions. That is, the probability of a vertex

having a degree of k is proportional to (1/k)α for some α > 1, and those networks are

referred to as scale-free. The first and most widely known procedure is Barabási–Albert

(BA) model [11] for generation of scale-free networks, and many other models are later

suggested for scale-free networks [12, 13]. Unlike to many other models, the scale-free

networks contain hubs, which are high-degree vertices having much more connections

than others in the network. It is one of the significant characteristics of scale-free

networks because they can shorten the path length between any pair of vertices.
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On the other hand, removing a few hubs may cause the network to be divided into

disjoint components, and communications among vertices can be considerably affected.

A

B

C

D

E

F

G

Managers

A B C D E F G

M
a
n
ag

er
s

A 0 1 0 1 0 0 0

B 0 0 0 0 0 1 1

C 1 1 0 1 0 1 1

D 1 1 0 0 0 1 0

E 1 1 0 0 0 1 1

F 0 0 0 0 0 0 0

G 0 1 0 0 0 1 0

Figure 1.2. A subgraph of the Manager Network Dataset and Corresponding Binary

Matrix

In recent years, the interest in random graphs has widely increased and several

methods have been proposed for generation of graphs satisfying given degree sequences.

These methods can be used as an alternative way for obtaining graph samples from

a distribution. For instance, vertex degrees (d1, ..., dn) of a graph are drawn from the

desired distribution, and then uniformly a graph is selected from the set of graphs

realizing the degree sequence (d1, ..., dn) at random. In this way, samples distributed

according to the desired distribution can be generated. Another motivation for studying

random graphs with prescribed degree sequence might be to carry out hypotheses tests

on a question arising in various fields. For instance, Krackhardt [14] collected data from

the management team of a company by asking each manager whom he or she goes to

request help for a problem or to give an advice. Managers’ different attitudes towards

their colleagues can be represented by a directed graph, and a part of this graph is

depicted in Figure 1.2. A researcher may wonder whether there is a mutual interaction

among managers in the company, and test the null hypothesis of tendency towards

mutuality by uniformly generating samples satisfying the given degree sequence at

random [15].
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Furthermore, it may not be always possible to have enough knowledge about

the whole network structure, some information related to vertex connections may be

missing, and one can posses the degree sequence of the network. Consider an infectious

disease transmitting from a person to person by direct or indirect contact in a society.

Each individual can have roughly knowledge about the number of people he or she

contacted in a certain time interval but may not express the real identities of every

person. An epidemiologist may desire to construct a suitable contact graph to study

the infectious scenarios of the disease on it [16].

Random graphs may be also used for enumeration of objects satisfying certain

constrains. For example, a chemical molecule can be modeled by a graph structure by

considering each atom as a vertex and bounds between atoms as edges. A molecule

can have different structures denoted by the same molecular formula, which are called

isomers of the molecule. If the valencies of atoms in the molecule are known, then

isomers of the molecule can be counted by using random graphs [17].

H C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

H

Pentane

H C C C H

H

H

H

H

C HH

H

C HH

H

Neopentane

H C C C C H

H

H

H

H

H H

H
C

H

HH

Isopentane

Figure 1.3. Three Structural Isomers of Pentane, C5H12

1.2. Organization of the Thesis and Contributions

The rest of the thesis is organized as follows: The fundamental definitions and

notations for graph theory and probability theory are reviewed in Chapter 2. A natural

and well-known edge-switching Markov chain method for simple graphs is described in

Chapter 3.
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Chapter 4 is devoted to direct construction algorithms, and two different approaches

using Monte Carlo methods, importance sampling and sequential importance sam-

pling, are presented in Section 4.1 for simple and bipartite graphs. Two well-known

algorithms suggested by Havel-Hakimi and Erdös-Gallai to check whether a degree se-

quence is graphical or not is given in Sections 3.1 and 4.1, and the analogous theorem of

Gale–Ryser for bipartite graphs is stated in Section 4.2. In Subsection 4.2.2, the main

contribution of the thesis is described: a new uniform sampling and exact counting

algorithm is proposed for simple graphs by transforming and adapting the algorithm

given for bipartite graphs in Subsection 4.2.1. In Chapter 5, the applications of the

presented algorithms are illustrated in several examples such as hypothesis testing, net-

work analysis and graph enumeration. Finally, the thesis is concluded and the possible

future works are stated in Chapter 6.
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2. PRELIMINARIES

In this chapter, the fundamental definitions and notations for graph theory and

probability theory which are needed for the subsequent sections are briefly reviewed.

A reader who is unfamiliar with the concepts and who desires more detailed knowledge

may check the references [18–23].

2.1. Basics of Graph Theory

A graph G = (V,E) is an ordered pair of sets where V is the vertex set and E is

the edge set such that E ⊆ {{u, v} : u, v ∈ V }. If the edge and vertex sets of a graph

G are not explicitly written, they will be denoted by V (G) and E(G), respectively.

Since only finite graphs are considered throughout the thesis, the vertex set V is finite.

An edge is an unordered pair of vertices and denoted by {u, v} or u ∼ v. A graph is

called directed or digraph if its edges have an orientation, and they are represented by

the ordered pair (u, v) for some vertices u, v ∈ V (G).

1

2

3

4

Figure 2.1. Undirected and Directed Graphs

For an edge {u, v} ∈ E(G), it is said that u is adjacent to v or u is a neighbor

of the vertex v. The set of all neighbors of the vertex v is denoted by N (v). A loop

in a graph is an edge connecting a vertex to itself. Multiple edges are two or more

edges connecting the same vertices. An independent set is a subset of the vertex set of

a graph where any two vertices are not adjacent. For instance, the subsets {1, 3, 4, 6}

and {2, 5} of the vertex set of the graphs in Figure 2.2 are independent sets.
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Perfect matching of a collection of vertices is a set of edges where every vertex is

adjacent to exactly one vertex. A partition P of a set S is a collection of non-empty

subsets of S where
⋃
X∈P
X = S, and X ∩ Y = ∅ for any X ,Y ∈ P .

1

2

3

4

5

6

2 5

31 4 6

Figure 2.2. Isomorphic Bipartite Graphs

A graph with no edges and no vertices is called null, and a graph having at

least one vertex with no edges is said to be empty graph. A simple graph is a graph

containing no loops and no multiple edges. A graph is bigraph or bipartite if its vertices

is partitioned into two disjoint independents sets V + and V −. A graph is called labeled

if its vertices are assigned to an element from a non-empty set. The degree of a

vertex v of an undirected graph is the number of edges adjacent to v, and denoted

by deg(v). The degree sequence d of a labeled undirected graph G with vertex set

V (G) = {1, ..., n} is a sequence (d1, ..., dn) in which the degree of a vertex v ∈ V (G)

is equal to dv. In Figure 2.3, two different (i.e. non-isomorphic) simple graphs having

the same degree sequence (3, 2, 2, 3, 2, 2) are depicted.

1

23

4

5 6

1

23

4

5 6

Figure 2.3. Two Non-isomorphic Graphs Sharing the Same Degree Sequence
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Two simple graphs G and G̃ are called isomorphic, and denoted by G ' G̃ if

there exists an isomorphism f : V (G) → V (G̃) such that {u, v} ∈ E(G) if and only if

{f(u), f(v)} ∈ E(G̃). If the graphs G and G̃ are labeled with labeling functions l and

l̃, the additional condition that l(v) = l̃(f(v)) for all v ∈ V (G) must be satisfied.

Let d = (d1, ..., dn) ∈ Nn be a non-increasing degree sequence, and the conjugate

of d is denoted by d∗, and defined by (d∗1, ..., d
∗
n) where d∗i = |{dk : dk ≥ i}|. For any

sequence d = (d1, ..., dn) ∈ Nn, the functions ⊕i1,...,ik and 	i1,...,ik are defined by

⊕i1,...,ikd =

di + 1 for i ∈ {i1, ..., ik}

di otherwise

	i1,...,ik d =

di − 1 for i ∈ {i1, ..., ik}

di otherwise

for distinct indices i1, ..., in ∈ {1, ..., n}

2.2. Basics of Probability Theory

Let X be a set, and its power set is denoted by P(X), which contains all subsets

of X. A subset X ∈ P (X) is said to be a σ-algebra, if X ∈ X , any set A ∈ X implies

X\A ∈ X , and the union
⋃
i=1Ai ∈ X for A1, A2, . . . ∈ X . If X is a topological space,

then the σ-algebra generated by the open sets of X is called the Borel σ-algebra on X,

and denoted by B(X).

A measurable space (X,X ) is an ordered pair where X is a σ-algebra of X, and

the elements of X is called measurable sets. A measure µ on (X,X ) is a function from

X to R̄+ satisfying µ(∅) = 0, µ(A) ≥ 0 for all A ∈ X and µ(∪iAi) =
∑

i µ(Ai) for all

countable collections of pairwise disjoint sets {Ai}i>0 where Ai ∈ X . A measure P is a

probability measure, if P(X) = 1. An ordered pair (X,X ,P) is said to be a probability

space where a probability measure P is defined on the measurable space (X,X ).

Let (X,X ), and (Y,Y) be measurable spaces. A function X : X −→ Y is called

measurable if the preimage X−1(B) = {a : X(a) ∈ B} is in X for every B ∈ Y .
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If Y is equal to B(R̄), then the function X is called X -measurable where the set B(R̄)

denotes the Borel σ-algebra on R̄, and X -measurable functions are named as Borel

functions. A function X from a probability space (X,X ,P) to a measurable space

(Y,Y) is called random variable if X is measurable.

For a random variable X : X −→ Y, the measure µ on (Y,Y) defined by

µ(B) := P
(
X−1(B)

)
= P{X ∈ B}, B ∈ Y

is called the distribution of the random variable X. Let µ and ν be measures on a

measurable space (X,X ), then µ is said to be absolutely continuous with respect to ν

if ν(A) = 0 implies µ(A) = 0 for every set A ∈ X .

Let (X,X ), and (Y,Y) be measurable spaces. A function K : X × Y −→ R̄+ is

called transition kernel from (X,X ) to (Y,Y) if the following conditions are satisfied:

(i) the mapping x 7−→ K(x,B) is X -measurable for every element B ∈ Y

(ii) the mapping B 7−→ K(x,B) is a measure on (Y,Y) for every element x ∈ X

A transition kernel K from (X,X ) to (X,X ) satisfying K(x,X) = 1 for every x ∈ X

is said to be a Markov kernel on (X,X ). Let µ be a measure on a measurable space

(X,X ), and the measure µK on (Y,Y) is given by

µK(B) :=

∫
X

µ(da)K(a,B) for B ∈ Y

and the measure µ⊗K on the product space (X× Y,X ⊗ Y) is defined by

(µ⊗K)(C) :=

∫ ∫
C

µ(da)K(a, db) for C ∈ X ⊗ Y (2.1)
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Let K1 and K2 be transition kernels from (X,X ) to (Y,Y), and from (Y,Y) to (Z,Z),

respectively. The product of kernels, K1K2, defined by

K1K2(a, C) :=

∫
Y

K1(a, db)K2(b, C) a ∈ X, C ∈ Z

is a transition kernel from (X,X ) to (Z,Z). The transition kernel K3⊗K4 from (X,X )

to (Y × Z,Y × Z) is given by

(K3 ⊗K4)(a,D) :=

∫ ∫
D

K3(a, db)K4(a, b, dc), a ∈ X, D ∈ Y × Z

where K3 and K4 are kernels from (X,X ) to (Y,Y), and from (X × Y,X × Y) to

(Z,Z), respectively. For a transition kernel K on (X,X ), its powers K0 = I, K1 = K,

K2 = KK, K3 = KK2,... are the transition kernels on (X,X ) where the identity kernel

I(x,A) = δx(A) is defined by

δx(A) =

1, if x ∈ A

0, if x 6∈ A

where δx is generally referred to as Dirac measure.

Let T be an arbitrary countable or uncountable index set, and the collection of

X-valued random variables {Xi : i ∈ T } is called a X-valued stochastic process. A

family of σ-algebras {Fi : i ∈ T } on X is called filtration of (X,X ) if Fi ⊆ X for all

i ∈ T , and Fi ⊆ Fj whenever i < j for i, j ∈ T . A filtered probability space is a

quadruple (X,X ,F ,P) where F = {Fi : i ∈ T } is a filtration of (X,X ). A stochastic

process {Xi : i ∈ T } is F-adapted, if each random variable Xi is Fi-measurable for all

i ∈ T .
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3. MARKOV CHAIN MONTE CARLO METHODS

There are various types of methods proposed for sampling graphs with a given

degree sequence, and most of them can be roughly grouped into two categories: direct

graph construction algorithms from scratch by adding edges according to a certain

rule, or methods relying on the conversion of an existing graph into a new one by

successively removing and adding edges without changing the degrees of vertices. This

chapter considers the latter case, and investigates an approach based on a stochastic

process in order to generate uniformly distributed simple graphs satisfying a particular

degree sequence.

3.1. Switch Markov Chain for Simple Graphs

A sequence d = (d1, ..., dn) is called graphical if there exists a labeled graph G

with the vertex set {1, ..., n} where vertex v has a degree dv, and the graph G is called

realization of the degree sequence d. Let Gd be the set containing all realizations of

the graphical degree sequence d.

The switch chain model is one of the mostly used Markov chain Monte Carlo

methods to generate samples realizing a given graphical degree sequence. The switch

Markov chain Md is defined on the set Gd as follows: Let G be a realization of the

specified degree sequence, then do nothing with a probability 1
2
. Otherwise, uniformly

select two edges {v1, v2}, {v3, v4} having no common vertex, and switch the edges with

a uniformly chosen perfect matching M of the set {v1, v2, v3, v4} if M∩ E(G) = ∅ so

that vertex degrees of the graph remain the same, and simple graph assumption is not

violated. If M∩ E(G) 6= ∅, stay at the same realization G. In the chain, each move

from the previous graph G to the current realization is called a switching step, and the

more detailed description of the algorithm is given in Figure 3.3.
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Figure 3.1. Illustration of Edge Switching Steps

Note that an initial graph realizing a given degree sequence d is needed in order to

carry out the switching steps, and it can be constructed with the well-known algorithm

of Havel and Hakimi. Beginning with an empty graph, a vertex v is chosen randomly,

and it is attached to deg(v) distinct vertices u1, ..., udeg(v) having the largest deg(v)

degrees in the sequence d = (d1, ..., dn). Then, the degree sequence d is updated to

	v,u1,..,udeg(v)d, and the process is repeated until all elements of the degree sequence d

becomes zero.

Theorem 3.1. (Havel-Hakimi) Let d = (d1, ..., dn) ∈ Nn be a degree sequence where

di < n for all 1 ≤ i ≤ n, and d̃ be a degree sequence obtained from d by subtracting

1 from dj highest elements (other than j) in d, and by letting d̃j = 0 for some j ∈

{1, ..., n}. Then d is graphical if and only if d̃ is graphical. Moreover, if d is graphical,

there is a realization of d containing edges between the vertex j and dj highest degree

vertices (other than vertex j).

Proof. Assume that the sequence d̃ is graphical, then it has a realization G̃ in which

the degree of the vertex v is equal to 0 for some v ∈ {1, ..., n}. Let S be a set containing

vertices (except v) having the dv highest degrees in d. Then, a realization G of d can

be obtained by simply adding the edges {v, s} for all s ∈ S to the realization G̃.

Suppose d is a graphical degree sequence, and v is a vertex where deg(v) > 0 in

a realization G of d. If G contains the edges {v, s} for all s ∈ S, then a realization of d̃

can be obtained by removing the edges {v, s} for all s ∈ S. If {v, w} ∈ E(G) for some

vertex w 6∈ S, then there exist a vertex s̃ ∈ S such that {v, s̃} 6∈ E(G). If the degree

of the vertex w is equal to the degree of s̃ then switch the vertices w and s̃.
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Thus, a realization containing all of the edges {v, s} for every s ∈ S is obtained, and

apply the previous case. If the degree of w is less than the degree of s̃, then there

exists a vertex u ∈ N (s̃)\(N (w) ∪ {w}). Replace the edges {v, w}, {s̃, u} with {v, s̃}

and {w, u}, so a realization of d containing all of the edges {v, s} for every s ∈ S is

attained, and then apply the first case. Note that the degree of w cannot be greater

than the degree of s̃ because s̃ ∈ S, and w 6∈ S by assumption. The same arguments

(if necessary) can be repeated until a realization of d containing all of the edges {v, s}

for s ∈ S is obtained.

4

3

1 2

5

6

7 8

Figure 3.2. A Realization of the Sequence (2, 2, 3, 2, 2, 3, 2, 2)

Havel-Hakimi algorithm can be also considered as an alternative to the Erdös-

Gallai Theorem 4.1 in testing whether a given degree sequence is graphical. For

instance, one can obtain the following sequence of graphical degree sequences for

(3, 4, 5, 2, 2, 2).

(3, 4, 5, 2, 2, 2)→ (3, 3, 4, 0, 2, 2)→ (2, 3, 3, 0, 2, 0)→ (1, 0, 2, 0, 1, 0)→ (1, 0, 1, 0, 0, 0)

with the chosen indices 4, 6, 2, and 5, respectively. Since the sequence (1, 0, 1, 0, 0, 0) is

graphical, (3, 4, 5, 2, 2, 2), and the intermediate sequences are also graphical.

Notice that any realization of a given graphical degree sequence cannot be gen-

erated with this method. For instance, consider the realization of the degree sequence

(2, 2, 3, 2, 2, 3, 2, 2) in Figure 3.2. In the first step, if a vertex of degree 2 is chosen, then

the vertex must be adjacent to both of vertices having degree 3, but there is only one

edge in the graph between any pair vertices of degree 2 and 3.
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Initially, a vertex having degree 3 cannot be also taken because there is no edge between

the vertices of degree 3. Thus, the graph drawn in Figure 3.2 cannot be constructed

by Havel-Hakimi algorithm.

Input: A graph G0 satisfying the degree sequence d = (d1, ..., dn)

Output: A sample GK realizing the degree sequence d = (d1, ..., dn)

1: for k = 1 to K do

2: r ← a uniformly chosen number from (0,1)

3: if r > 1
2

then

4: Uniformly choose two random non-adjacent edges {v, u} and {x, y}.

5: Choose a perfect matching M of {v, u, x, y}

6: if M ∩ E(G) = ∅ then

7: Construct Gk+1 by removing the edges {v, u}, {x, y} and adding

8: the edges of M

9: end if

10: end if

11: end for

Figure 3.3. The Switch Markov chain Md on the set Gd

Let (Y,Y ,F ,P) be a filtered probability space, and K be a Markov transition ker-

nel on a measurable space (X,X ). An F -adapted X-valued stochastic process {Xt}t∈T
is called Markov chain with respect to the filtration F , and the transition kernel K if

the process {Xt}t∈T satisfies

P(Xt+1 ∈ B|Ft) = K(Xt, B) (3.1)

for all t ∈ T , and sets B ∈ X .
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If the measurable space (X,P(X)) is countable, then the Markov property (3.1) can be

rewritten as

P(Xt+1 = x(t+1)|Xt = x(t), ..., X0 = x(0)) = P(Xt+1 = x(t+1)|Xt = x(t)) (3.2)

where x(i) ∈ X for all i ∈ T and the transition kernel can be represented by a matrix

K = (kij) where kij = P(Xt+1 = xj|Xt = xi).

Note that the switch chainMd described above is defined on the finite state space

consisting of the simple graphs realizing the graphical degree sequence d = (d1, . . . , dn).

Given the current graph state, the future graphs in the chain are independent of the

past states, so the chain Md satisfies the Markov property (3.2). Since the transition

kernel K remains the same for each index t ∈ T , the process is also a time-homogeneous

Markov chain.

A probability measure π on a countable state space X is a stationary distribu-

tion of the Markov chain {Xt}t∈T if it satisfies π(y) =
∑

x∈X π(x)K(x, y) for all states

x, y ∈ X. For an initial probability distribution µ, if the measure µKn on (X,X )

converges to a limiting distribution π as n increases, then π must be the stationary

distribution of the chain, and if the limiting distribution π is unique, it is indepen-

dent of the initial measure µ [24]. By using this fact, one can generate approximate

samples from a desired distribution by constructing a Markov chain converging to this

distribution. Then, initially chosen samples from any arbitrary measure are (almost)

distributed according to the limiting distribution after taking sufficient number of steps

in the chain. However, a constructed Markov chain may not be convergent or it may

have more than one stationary distribution. The following theorem gives the sufficient

conditions for a Markov chain to guarantee that it has a unique stationary distribution

and it converges to the stationary distribution.
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Theorem 3.2. [24] If a Markov chain {Xt}t∈T is irreducible, positive recurrent and

aperiodic on a countable state space X with transition kernel K, then it has a unique

stationary distribution π, and

sup
x∈X

∣∣µKn(x)− νKn(x)
∣∣ −→ 0, as n −→∞

for any initial probability measures µ and ν. Let µ be δx and ν be π, then it can be

obtained that

sup
x∈X

∣∣Kn(y, x)− π(x)
∣∣ −→ 0, as n −→∞ for any y ∈ X

A state x ∈ X is visitable from another one y ∈ X in a countable state space, if

there exists k ∈ N such that Kk(y, x) > 0, and a Markov chain is called irreducible

if every state is visitable from any other state. A state x is said to be recurrent if

it is always visited in a finite time with probability 1 by starting at the same state

x, and it is positive recurrent if the expected number of steps required to return the

same state is finite. Another characteristic of a state x is its periodicity which is

defined by the greatest common divisor of the set {n > 0 : Kn(x, x)} > 0, and it is

said to be aperiodic if the period of the state is one. A Markov chain is called positive

recurrent, and aperiodic if all states of the process are positive recurrent, and aperiodic,

respectively.

The following corollary shows that the switch chain Md is irreducible, positive

recurrent and aperiodic, so it converges to a unique stationary distribution, and it is

uniform over the set of all realizations of the degree sequence d. Hence, the switch

chainMd can be used to generate samples (approximately) uniformly distributed over

the set Gd.

Corollary 3.3. Let d ∈ Nn be a graphical degree sequence. The switch Markov chain

Md converges to the uniform stationary distribution over Gd regardless of any initial

realization of the degree sequence d = (d1, ..., dn).
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Proof. It can be seen that one can reach any realization of the sequence d from another

one with a sequence of edge switching operations [25] so the chain is irreducible. Since

the state space Gd is finite, the irreducible Markov chainMd is also positive recurrent

[24]. The chain can stay at the same state with a probability greater than 1/2 by the

third and sixth steps of the algorithm in Figure 3.3, so it is aperiodic. By Theorem

3.2, the chain has a unique stationary distribution π satisfying KTπ = π where K is

the state transition matrix of the chain. K is symmetric due to the construction of the

chain so KT = K, and 1 is an eigenvalue of the matrix K. Hence, π is the uniform

distribution over Gd since the each row sum of the matrix K equals to 1.

The mixing time of a Markov chain is the number of steps required to be sure

that the distribution of the states of the chain gets closer enough to the stationary

distribution. A useful Markov chain should posses the rapid mixing property so that

a sample from the stationary distribution can be generated in a polynomial time with

respect to the input size. In 1999, Kannan, Tetali and Vempala [26] proposed an edge

switching Markov chain method, and they conjectured that the chain mixes rapidly

for any degree sequence, but they could give a proof only for regular bipartite graphs.

Later, Cooper, Dyer and Greenhill [27] proved it for regular undirected graphs, and in

2011 Greenhill [28] showed that the switch chain is rapidly mixing for regular directed

graphs. In 2017, Greenhill and Sfragara [29] proved that the switch chain for undirected

graphs with a degree sequence (d1, ..., dn) is rapidly mixing if di ≥ 1 for all 1 ≤ i ≤ n,

and the maximum degree dmax satisfies 3 ≤ dmax ≤ 1
3

√∑n
i=1 di. Many other proofs

have been also provided for special types of graphs and degree sequences [30–33], but

it is still an open question for the general case.
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4. DIRECT CONSTRUCTION METHODS

Bipartite graphs are another important mathematical structures which are used

to model interactions between different two groups of objects, and naturally arise in

many applications such as affiliations networks. This chapter is devoted to direct

construction methods for simple and bipartite graphs with given degree sequences.

4.1. Weighted Sampling Methods

Approximately uniform samples can be generated by using the edge-switching

based Markov chain method introduced in the previous section. However, the unknown

mixing time of the chain is its main disadvantage, and directly obtaining uniformly

distributed samples over the set of realizations of a given degree sequence is not simple

due to the complicated interactions between the vertices of a graph. This section

considers different Monte Carlo approaches allowing one to estimate the properties of

the uniform distribution over the set of all graphs satisfying a given degree sequence.

4.1.1. Importance Sampling

The expected value of random variables are encountered in many fields, and most

problems can be also restated as an expectation of certain functions. However, in most

cases it is not always simple to analytically evaluate these expectations due to the

various reasons such as high dimensionality of the problem space or the nature of

functions. In such cases, Monte Carlo methods become very useful in the computation

of expectations when the other approaches are inadequate.

Let (X,X ) be a measurable space, Ξ be a random variable taking values in (X,X ),

and µ be the probability distribution of Ξ.
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Then, the expected value of a bounded X -measurable function f with respect to µ is

defined by

Eµ[f(Ξ)] :=

∫
X

f(ξ)µ(dξ) (4.1)

and the Monte Carlo estimator for the expectation of E[f(Ξ)] is given by

f̂µ,N =
1

N

N∑
i=1

f(ξi) (4.2)

where ξ1, ..., ξN are independent and identically distributed (iid) random variables from

the distribution µ. The strong law of large numbers implies that the estimator f̂µ,N

converges almost surely to the expectation Eµ[f(Ξ)] as N increases.

Importance sampling is a classical Monte Carlo method in which the expected

value of a function with respect to a probability measure µ is approximated by using

samples drawn from another probability distribution. In many situations, obtaining

samples from the desired distribution µ turns into a challenging problem. The main idea

of importance sampling relies on the change of probability measures so that samples can

be drawn from a more appropriate measure ν rather than the distribution µ. Let the

target distribution µ be absolutely continuous with respect to the proposal distribution

ν and the expectation in (4.1) can be rewritten as

Eµ(f(Ξ)) :=

∫
X

f(ξ)µ(dξ) =

∫
X

f(ξ)
dµ

dν
(ξ)ν(dξ) =

∫
X

f(ξ)w(ξ)ν(dξ) = Eν [f(Ξ)w(Ξ)]

where f is bounded X -measurable function, and the weight w(ξ) is defined by dµ
dν

(ξ)

which is the Radon-Nikodym derivative of µ with respect to the measure ν. The

estimator is given by

f̂ν,N =
1

N

N∑
i=1

f(ξ(i))
dµ

dν
(ξ(i))

where ξ(i) ∼ ν for 1 ≤ i ≤ N .
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Recall that Gd is the set of simple graphs realizing the degree sequence d =

(d1, ..., dn), and let µ be the uniform distribution over the measurable space (Gd,P(Gd)).

Since directly obtaining samples from the distribution µ is not simple, the importance

sampling idea can be applied for this problem. Blitzstein and Diaconis [1] suggested a

proposal distribution σ and designed an effective algorithm to generate samples from

the measure σ. The more detailed description of the method is given in Figure 4.1

below.

Input: A graphical degree sequence d = (d1, ..., dn), and empty edge set E

Output: An ordered edge set E

1: If d = (0, ..., 0), return E

2: Choose the least index v where dv is the smallest non-zero element

3: Compute the candidate set Cv = {w 6= v: {v, w} 6∈ E and 	v,wd is graphical}

4: Choose an index u ∈ Cv with probability proportional to du

5: Add the edge {v, u} to E , and update d to 	v,ud.

6: Repeat the steps 3− 5 until the degree of v equals to 0

Figure 4.1. Sampling Algorithm for Simple Graphs Realizing the Degree Sequence

Let m be the index of the smallest non-zero element in the graphical degree se-

quence d = (d1, ..., dn), and let d = d(0), d(1), ...,d(k) be the graphical degree sequences

where each sequence d(i) is obtained by subtracting 1 from the sequence d(i−1) at co-

ordinates vi and m for distinct indices v1, ..., vk,m ∈ {1, ..., n} and k ≤ d
(0)
m . Then,

there exists a realization of d(0) containing all of the edges {v1,m}, ..., {vk,m}, and a

realization of d(k) containing none of these edges [1]. Hence, the candidate set in the

third step always contains at least one possible index, and the algorithm in Figure 4.1

runs until the sequence d equal to (0, ..., 0) without getting stuck. The algorithm can

also produce any realization of a given degree sequence with a positive probability.

In the third step, the graphicality of a degree sequence can be tested by checking

the necessary and sufficient conditions given in the well-known Erdös-Gallai theorem.
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Theorem 4.1. (Erdös-Gallai). Let d = (d1, ..., dn) ∈ Nn be a degree sequence with

d1 ≥ d2 ≥ ... ≥ dn. Then the sequence d = (d1, ..., dn) is graphical if and only if
∑n

i di

is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di) for each k ∈ {1, ..., n} (4.3)

Proof. [34] For the necessity part, suppose the sequence d is graphical. The degree

sum
∑n

i di is even since the sum of degrees is equal to twice the number of edges. Let K

be a set of k vertices in a realization of d. There are at most
(
k
2

)
edges among vertices

in K, and any vertex v 6∈ K can have at most min(k, deg(v)) edges from v into the set

K. Hence, the inequalities in (4.3) are satisfied for each k ∈ {1, ..., n}.

Let a subrealization of a given non-increasing degree sequence d = (d1, ..., dn) be a

graph with vertex set {1, ..., n} such that deg(v) ≤ dv for all v ∈ {1, ..., n}. The

critical index r of a subrealization is the maximum index value satisfying the equality

deg(v) = dv for all 1 ≤ v < r. The proof of the sufficiency side of the theorem is

based on the successive construction of subrealizations so that the difference between

deg(v) and dv is decreased in each subrealization, and finally a graph satisfying the

given degree sequence d will be obtained.

Initially, there is a subrealization containing no edge, so the critical index value r

is less than n if the entries of the degree sequence d is not all zero, otherwise the

proof completes. Let S be a set of vertices defined by {r + 1, ..., n}. Note that S is

an independent set since the initial subrealization does not contain any edge between

the vertices in S. Throughout the proof, the set S will remain independent in each

subrealization. Let G be a subrealization of the degree sequence d, and r be a critical

index of it. Then,

Case 1, if there exists some index v > r such that {v, r} 6∈ E and deg(v) < dv,

then add the edge {r, v} into E(G). Hence, deg(r) is increased, and the set S remains

independent.
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Case 2, if there exists v < r such that {v, r} 6∈ E , then there exists some vertex

u ∈ V (G) such that {v, u} ∈ E(G) and {u, r} 6∈ E(G) since deg(v) = dv ≥ dr > deg(r).

If dr − deg(r) ≥ 2, then remove the edge {v, u}, and add the edges {v, r}, {r, u}, so

that deg(r) is increased by 2. If dr − deg(r) = 1, then there exists some vertex w > r

such that dw > deg(w) since
∑n

i=1 di−
∑n

i=1 deg(i) is even and di = deg(i) for all i < r.

If there is not any edge between the vertices r and w, then Case 1 can be applied.

Otherwise, replace the edges {r, w}, {v, u} with {v, r} and {u, r}.

Case 3, if {1, 2, ..., r − 1} ∈ N (r), and there exists some u > r such that du 6=

min{du, r}. In a subrealization, deg(u) ≤ du by assumption, and r ≥ deg(u) since

S is independent, so deg(u) < min{du, r} (∗). If {u, r} 6∈ E(G), then apply the

Case 1. Otherwise, there exists some vertex v < r such that {v, u} 6∈ E(G) since

deg(v) = dv ≥ du and du > deg(u) by (∗). Since deg(v) > deg(r), there exist a vertex

w such that {v, w} ∈ E(G) and {r, w} 6∈ E(G). Then, remove the edge {v, w} and add

the edges {r, w}, {v, u}.

Case 4, if {1, 2, ..., r − 1} ∈ N (r), and there exists some vertices v, u ∈ V (G)

such that v < u < r and {v, u} 6∈ E(G). Then, there exists vertices w and z such

that {v, w} ∈ E(G), {r, w} 6∈ E(G) and {u, z} ∈ E(G), {r, z} 6∈ E(G) since deg(v) ≥

deg(u) > deg(r). If w, z < r, then Case 1 can be applied. If w, z > r, then switch the

edges {v, w}, {u, z} with the edges {v, u}, {w, r}.

If none of the four cases are satisfied, then the vertices {1, 2, ..., r} are pairwise

adjacent, and deg(i) = min{di, r} for every i > r. Since S is independent, then∑r
i=1 deg(i) = r(r − 1) +

∑n
i=r+1 min{r, di}. By initial assumptions in (4.3), it can

be also written that
∑r

i=1 di ≤ r(r − 1) +
∑n

i=r+1 min(r, di), so dr − deg(r) ≤ 0 since

di = deg(i) for all i < r. Hence, the equation dr = deg(r) can be acquired by the

inequalities dr−deg(r) ≤ 0 and dr−deg(r) ≥ 0. Now, the critical index value r can be

increased by 1, and the same process can be repeated until a realization G is obtained

where deg(i) = di for all vertices i ∈ V (G).
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It is worth to note that the algorithm described in Figure 4.1 can produce the

same realization in different edge sequence orders. For instance, the following edge

sequences

E = ({6, 1}, {6, 3}, {4, 3}, {4, 1}, {3, 1}, {3, 5}, {5, 1}, {5, 2}, {2, 1}), and

Ẽ = ({6, 3}, {6, 1}, {4, 3}, {4, 1}, {3, 1}, {3, 5}, {5, 1}, {5, 2}, {2, 1})

represent the same graph, and can be generated for a given input sequence d =

(5, 2, 4, 2, 3, 2) with probabilities 1/56, and 1/40, respectively. Let Graph(·) be a func-

tion mapping every edge sequence to the corresponding graph, and let σ(E) be the prob-

ability of generating the edge sequence E by the algorithm, so Graph(E) = Graph(Ẽ),

and σ(E) = 1/56, σ(Ẽ) = 1/40.

Let Ed be the set consisting of all possible edge sequences produced by the al-

gorithm for the graphical degree sequence d = (d1, ..., dn). It can be said that two

sequences E, Ẽ ∈ Ed are equivalent if Graph(E) = Graph(Ẽ), and denoted by E ≡ Ẽ.

Therefore, the binary relation ≡ defines an equivalence relation on the set Ed. Let c(E)

be the size of the equivalence class [E] for the edge sequence E ∈ Ed, and let f̃ be the

induced function over Ed of the function f which is defined on the set Gd such that

f̃(E) := f(Graph(E)).

Proposition 4.2. [1] Let π be a probability distribution on Gd. Then

Eσ

(
f̃(E)

c(E)

dπ̃

dσ
(E)

)
= Eπf(G) (4.4)

where π̃ is absolutely continuous with respect to σ, and dπ̃
dσ

is Radon–Nikodym derivative.

Moreover, an unbiased estimator of Ef(G) is

f̂σ,N =
1

N

N∑
i=1

f̃(Ei)

c(Ei)

dπ̃

dσ
(Ei) (4.5)
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where E1,...,EN are the output edge sequences generated by independently running N

times the algorithm in Figure 4.1 for the graphical degree sequence d = (d1, ..., dn).

Proof. Let E be an output sequence of edges produced by the algorithm.

Eσ

(
f̃(E)

c(E)

dπ̃

dσ
(E)

)
=

∫
Ed

f̃(ε)

c(ε)

dπ̃

dσ
(ε)σ(dε) =

∫
Ed

f̃(ε)

c(ε)
π̃(dε) =

∑
ε∈Ed

f̃(ε)

c(ε)
π̃(ε)

1
=
∑
ζ∈Gd

∑
{ε:Graph(ε)=ζ}

f̃(ε)

c(ε)
π̃(ε)

2
=
∑
ζ∈Gd

f(ζ)π(ζ) =

∫
Gd

f(ζ)π(dζ)

= Eπf(G)

The sum in the equality (1) is computed over equivalence classes [E] = {Ẽ ∈ Ed :

Graph(E) = Graph(Ẽ)}, and the equality (2) follows from the fact that c(E) = |{Ẽ ∈

Ed : Graph(E) = Graph(Ẽ)}| since c(E) is the size of the equivalence class [E] and note

that the induced functions f̃(E), π̃(E) are equal to f(Graph(E)) and π(Graph(E)) by

the definition, respectively.

Let v1, ..., vk be the chosen indices in the second step of the algorithm in Figure 4.1,

and d = d(1),d(2), ...,d(k) be the corresponding graphical degree sequences representing

the degree sequence in the second step while choosing the indices. If two edge sequences

are in the same equivalence class, it is clear that they must contain the same edges,

possibly in a different order. An edge sequence can be divided into disjoint edge groups

according to the chosen vertex vi in the second step. Hence, each group in the sequence

can have d
(i)
vi ! different permutations, and the size of an equivalence class [E] can be

computed by c(E) =
∏k

i=1 d
(i)
vi !.

Now, one can test any feature of the ensemble of simple graphs realizing a given

degree sequence by using Proposition 4.2.
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For instance, the cardinality of the set Gd can be estimated by choosing the probability

distribution π uniform over the measurable space (Gd,P(Gd)), and letting f(·) be

1/|Gd|. Then, the equation in Proposition 4.2 can be written as

|Gd| = Eσ
(

1

c(E)

dλ

dσ
(E)

)
(4.6)

where λ(·) is the counting measure on (Ed,P(Ed)). The number of simple graphs

sharing the same graphical degree sequence with the friendship network in Figure 1.1

was estimated as 9.327 ± 0.588 × 1041 by using the unbiased estimator in (4.5) with

10.000 samples. The result is very close to the actual value, and the percent error is

only %9.247.

4.1.2. Sequential Importance Sampling

In the importance sampling method described in the previous section, choosing

a good proposal distribution for a given target measure can be problematic in some

situations, especially, in high dimensional problems. In such cases, using sequential

importance sampling technique can be more convenient. Let µ := µ1 ⊗ µ2 ⊗ · · · ⊗ µd
be a probability measure on (Xd,X d) in which µ1 is a probability measure over (X,X )

and µi is a probability kernel from (Xi−1,X i−1) to (X,X ) for 2 ≤ i ≤ d.

Assume that ν := ν1 ⊗ ν2 ⊗ · · · ⊗ νd is the chosen proposal distribution and µi is

absolutely continuous with respect to νi for each 1 ≤ i ≤ d. The notation ξ1:i is used

to denote the vector (ξ1, ..., ξi), and the expected value in (4.1) can be rewritten as

Eµ[f(Ξ1, ...,Ξd)] =

∫
· · ·
∫
f(ξ1:d)

dµ1

dν1

(ξ1)

{
d−1∏
i=1

dµi+1(ξ1:i, ·)
dνi+1(ξ1:i, ·)

(ξi+1)

}
ν(dξ1:d) (4.7)

for a bounded measurable function f defined on Xd.
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The Radon-Nikodym derivative is given by

wd(ξ1:d) :=
dµ

dν
(ξ1:d) =

dµ1

dν1

(ξ1)

{
d−1∏
i=1

dµi+1(ξ1:i, ·)
dνi+1(ξ1:i, ·)

(ξi+1)

}

and the expectation in (4.7) can be approximated by the estimator

f̂ν,N =
1

N

N∑
j=1

f(ξ
(j)
1:d)wd(ξ

(j)
1:d) (4.8)

where ξ
(j)
1:d ∼ ν for 1 ≤ j ≤ N . The incremental weights wi can be recursively evaluated

as follows:

w1(ξ
(j)
1 ) =

dµ1

dν1

(ξ
(j)
1 ), wi+1(ξ

(j)
1:i+1) := wi(ξ

(j)
1:i )

dµi+1(ξ
(j)
1:i , ·)

dνi+1(ξ
(j)
1:i , ·)

(ξi+1)

where ξ
(1)
1:i , ..., ξ

(N)
1:i are samples from the proposal distribution νi for 1 ≤ i < d. Note

that each sample ξ
(j)
1:d can be also recursively constructed by drawing its each entry

ξ
(j)
i from the distribution νi(ξ

(j)
i−1, ·). The general schema of the sequential importance

sampling technique is given in the algorithm of Figure 4.2 in order to generate samples

ξ
(j)
1:d and evaluate the weights wi.

A matrix is called binary or (0,1)-matrix if its entries consist of only 0’s or 1’s.

LetM(p,q) be the set of n×m binary matrices with row sum p = (p1, ..., pn) and column

sum q = (q1, ..., qm). Let µ be a uniform probability measure on the measurable space

(M(p,q),P(M(p,q)). Since sampling directly from the distribution µ is very complicated

due to the marginal sums, a more suitable probability measure can be considered as a

proposal distribution to generate samples.
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Output: N samples ξ
(j)
1:d ∼ ν for 1 ≤ j ≤ N , and weights wi for 1 ≤ i ≤ d

1: for j = 1, ..., N do

2: for i = 1, ..., d do

3: if i = 1 then

4: Sample ξ
(j)
1 ∼ ν1

5: w1 ← dµ1
dν1

(ξ
(j)
1 )

6: else

7: Sample ξ
(j)
i ∼ νi(ξ

(j)
i−1, ·)

8: wi+1(ξ
(j)
1:i+1)← wi(ξ

(j)
1:i )

dµi+1(ξ
(j)
1:i ,·)

dνi+1(ξ
(j)
1:i ,·)

(ξi+1)

9: end if

10: end for

11: end for

Figure 4.2. Sequential Importance Sampling Algorithm

Let c(1), ..., c(m) denote the possible column vectors of a n×m binary matrix with

the column sum q = (q1, ..., qm). Note that the table can be constructed by sequentially

sampling the binary vectors c(1), ..., c(m) with the sums q1, ..., qm, and updating the

row sums at each step. In other words, the first column c(1) can be sampled from a

distribution, then the row sum p is updated to p− c(1). Similarly, the second and the

other columns can be designed so that a (0,1)-matrix M = (mij) is obtained where∑
imij = q.

Notice that some of the matrices constructed with this idea may not satisfy the

row sum p = (p1, ..., pn). Hence, it is very important to choose a good proposal measure

in order to reduce the number of invalid samples, and to increase the performance. Each

column j with the sum qj can be constructed by uniformly choosing qj positions to

place 1’s, but this method is unfortunately very inefficient.
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Chen et al. [2] proposed to select qj positions with a probability proportionally to

the corresponding row sums, and suggested to use conditional-Poisson (CP) sampling

method with weights wi =
p
(j−1)
i

m−j+1−p(j−1)
i

where p
(j−1)
i is the ith row sum after sampling

the first j − 1 columns.

Let R1, ..., Rn be random variables where Ri ∼ Bern (πi) and SR = R1 + · · ·+Rn.

Then the random variable SR follows Poisson-binomial distribution, or follows Binomial

distribution if all the probabilities πi are the same. Let the set I be {1, ..., n}, and the

conditional distribution of R = (R1, ..., Rn) given SR is called CP distribution and

P(R1 = r1, ..., Rn = rn|SR = k) =
P(R1 = r1, ..., Rn = rn, SR = k)

P(SR = k)

=

n∏
i=1

πrii (1− πi)1−ri

∑
r∈{0,1}n∑

j rj=k

n∏
i=1

πrii (1− πi)1−ri
=

n∏
i=1

wrii (1− πi)∑
r∈{0,1}n∑

j rj=k

n∏
i=1

wrii (1− πi)

=

n∏
i=1

wrii∑
A⊆I
|A|=k

∏
i∈A

wi
=

n∏
i=1

wrii

R(k, I)

where R(k, S) :=
∑

A⊆S
|A|=k

∏
i∈Awi, and wi are defined by πi

1−πi . Note that R(0, S) = 0,

R(k, S) = 0 for k > |S|, and P is the probability measure on ({0, 1}n,P({0, 1}n))

It can be seen that the marginal distribution of the column j after selecting the

columns c(1), ..., c(j−1) with updated row sum p(j−1) is the same as the conditional

distribution of R = (R1, ..., Rn) given SR = qj where Ri ∼ Bern (πi), and πi =
p
(j−1)
i

m−(j−1)

[2]. Hence, taking CP distribution as proposal distribution is a good choice. Chen and

Liu [35] proposed five different methods to draw samples from the CP distribution.

The drafting sampling procedure is preferred to apply for this problem, and the idea

behind the method is as follows: Let Si be the set of selected indices after the ith step,

so S0 = ∅ and |Si| = i for each 0 ≤ i ≤ n.
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A new element k from the set I\Si−1 is chosen with probability P(i, I\Si−1) which is

equal to

P(k, I\Si−1) =
wkR(c− k, I ∪ (Si−1 ∪ {k}))

(c− i− 1)R(c− i+ 1, I\Si−1)
(4.9)

where the weights wk = πk
1−πk

. The value of the function R(k, S) can be more effec-

tively computed in a recursive way by using the method suggested by Gail, Lubin and

Rubinstein [36], which is given by R(k, S) = R(k, S\{k}) + wkR(k − 1, S\{k})

Hence, a binary matrix can be generated by sequentially sampling the column

vectors from the conditional Poisson distributions νi as described above. Let Xi be

the set of all binary column vectors with sums (q1, ..., qi), and ν be the probability

distribution on (Xm,Xm) which is defined by ν1 ⊗ ν2 · · · ⊗ νm where ν1 is a measure

on (X,X ), and νi is a transition kernel from (Xi−1,X i−1) to (X,X ). Then, ν can be

considered in sequential importance sampling method as a proposal distribution for

the computation of expected values related to graph properties. For instance, the

expectation of Radon–Nikodym derivative dλ
dν

with respect to the measure ν gives the

cardinality of the set M(p,q).

Eν
[
dλ

dν
(Ξ)

]
=

∫
Xm

dλ

dν
(ξ)dν =

∫
Xm

dλ =
∣∣M(p,q)

∣∣ (4.10)

where λ(·) is the counting measure, and it is absolutely continuous with respect to

ν since ν(ξ) > 0 for any ξ ∈ Xd. The algorithm is tested on a small example, and

the number of binary matrices satisfying the column and row sums (2, 2, 2, 2, 2, 2) is

estimated to be (65, 505 ± 0, 448) × 103 with 1000 samples while the actual result is

equal to 67.950.
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4.2. Uniform Sampling Methods

The Monte Carlo methods presented in the previous section uses alternative dis-

tributions to construct graph samples so choosing a good proposal distribution is of

great importance for the performance of the algorithms. This section aims to directly

generate uniformly distributed realizations of a given degree sequence. A uniform

sampling algorithm for binary matrices with margin sums (or equivalently bipartite

graphs) is investigated, and a new uniform sampling method for simple graphs is de-

veloped based on this work.

4.2.1. Bipartite Graphs

Let N(p, q) be the number of (0,1)-matrices where the row and column sums are

p = (p1, ..., pn) ∈ Nn, q = (q1, ..., qm) ∈ Nm, respectively. It is clear that the sums of the

sequences must be equal to each other in order to find a valid binary matrix satisfying

the given margin sums. However, this condition alone is not sufficient to ensure the

existence of a binary matrix meeting with the margin sums (p, q). In 1957, Gale and

Ryser suggested a theorem which provides necessary and sufficient conditions for (0,1)-

matrices with prescribed row and column sums. It is analogous to the Erdös-Gallai

Theorem 4.1 proposed for simple graphs, and it will be used in the implementation of

the sampling algorithm presented in this section.

Theorem 4.3. (Gale-Ryser) [37] Let (p, q) ∈ Nn × Nm be a pair of non-increasing

sequences such that
∑n

i=1 pi =
∑m

j=1 qj. It is said that p is dominated by q∗, and

denoted by p E q∗ if
∑k

i=1 pi ≤
∑k

j=1 q
∗
i for all k where 1 ≤ k ≤ max{n,m}, pi := 0

for i > m, q∗j := 0 for j > n and q∗j := |ql : ql ≥ j, l ∈ {1, ...,m}|.

Then, there exists a (0-1)-matrix A = (aij) where
∑m

j=1 aij = p,
∑n

i=1 aij = q if and

only if p is dominated by q∗.

Proof. Let r(A) be the row sum, c(A) be the column sum of a given binary matrix A,

and k := max{n,m}.
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For the necessity part, let A = (aij) be any (0-1)-matrix satisfying r(A) = p

and c(A) = q. If A does not contain any gap, in other words, if it does not have any

entry auv = 0 such that aiv = 1 where i > u. Then q∗ = p since the sequences p is

non-increasing, so q∗Dq∗ = p. If the matrix A contains a gap, then there exists entries

auv = 0 and aξv = 1 for some ξ > u. If the values of auv and aξv are switched, then

a new matrix Ã = (ãij) is obtained by closing the gap without changing the row sum

c(A) = c(Ã). Since
∑l

i=1 ãij ≥
∑l

i=1 aij for l < ξ and
∑l

i=1 ãij =
∑l

i=1 aij for l ≥ ξ, it

can be written that r(Ã)D r(A). Therefore, if this process is repeated for each column

until no gap remains, then a new binary matrix Ã is obtained such that q∗ = r(Ã) so

q∗ D p since q∗ = r(Ã)D r(A) = p.

For sufficiency, assume that (p, q) are partitions such that
∑k

i=1 pi=
∑k

j=1 qj, and

q∗ D p. A matrix A = (aij) without any gap and c(A) = q can be easily constructed,

and let A be such a matrix. Then, r(A) D p since r(A) = q∗ and q∗ D p. If r(A) =

p, then the proof completes. Therefore, suppose that r(A) = (r1, r2, ..., rn) 6= p.

Let u and ξ be minimal indices such that ru > pu and rξ < pξ. Since r(A) D p, u

must be less than ξ. Then, a column index v can be found such that auv = 1, and

aξv = 0. By switching the values of the entries auv and aξv, a new matrix Ã with row

sum r(Ã) = (r1, ..., ru−1, ru − 1, ru+1, ..., rξ−1, rξ + 1, rξ+1, ..., rn) is obtained. Note that

‖ r(Ã) − p ‖2<‖ r(A) − p ‖2 and r(Ã) D p. Hence, if this argument is proceeded

until r(Ã) = p, then the desired matrix Ã = (ãij) is attained where
∑m

j=1 ãij = p,∑n
i=1 ãij = q.

For a given row and column sums (p, q) ∈ Nn × Nm, a binary matrix satisfying

the margin sums p and q can be built by successively filling the rows of an initially

empty table, starting from the first row up to the last row. Consider the example in

Figure 4.3 which illustrates the construction of a binary matrix. The first row of Table

1 is chosen as u = (1, 1, 0, 1, 1), and then the row and column sums are updated to

Lp = (3, 2), and q − u = (2, 1, 1, 1, 0) where L is the left shift operator. The same

procedure can be recursively applied to the remaining unfilled part of the table with

the updated margin sums (Lp, q − u) until it is completely filled with 1’s and 0’s.
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3 2 1 2 1

4

3

2

Table 1

3 2 1 2 1

4 1 1 0 1 1

3

2

Table 2

3 2 1 2 1

4 1 1 0 1 1

3 1 1 0 1 0

2

Table 3

3 2 1 2 1

4 1 1 0 1 1

3 1 1 0 1 0

2 1 0 1 0 0

Table 4

Figure 4.3. Construction of a Binary Matrix with Prescribed Column and Row Sums

Let b = max
j
qj, and the columns of a table can be divided into b disjoint groups

where each group k consists of the columns whose sum equal to k. For instance, the

groups of Table 1 in Figure 4.3 are represented by different colors. Note that in a row

vector u, changing the positions of 1’s in the same groups do not affect the possible

number of matrices for the remaining unfilled part of the table. Hence, the values of the

functions N(Lp, q−u) and N(Lp, q− v) are equal to each other for any permutation

v of the vector u in which the number of 1′s in each group remains unchanged.

Let q̄ = (q̄1, ..., q̄m) be a vector such that q̄k = |{qj : qj = k, 1 ≤ j ≤ m}|. Notice

that each element q̄k of the vector q̄ gives the number of columns whose sum equal

to k, which is size of the group k. In the construction of the first row of the table in

Figure 4.3, one position from the first and the third groups, and two positions from the

second group are chosen. Note that q̄ = (2, 2, 1) and there are
(

2
1

)(
2
2

)(
1
1

)
permutation

vectors v of the first row vector u where N(Lp, q − u) = N(Lp, q − v). In general,

the number of permutations of a row vector u can be computed by
(
q
s

)
:=
(
q1
s1

)
· · ·
(
qb
sb

)
where sk is the number of elements uj where qj = k, and the proof is given in Lemma

4.5.

Let q = (q1, ..., qm) ∈ Nm and r = (r1, ..., rm) ∈ Nm be two finite sequences

of length m and it is denoted by r ≤ q, if rj ≤ qj for all j ∈ {1, ...,m}. The

binary operator ”\” is defined by q\r := q − r + Lr, and the operator ∧ is given

by q ∧ r := (min(q1, r1), ...,min(qm, rm)).
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The following lemma proves that there always exists a corresponding vector s for a

given vector r ∈ Nm and for a chosen binary row vector u ∈ {0, 1}n satisfying r ≥ u.

Lemma 4.4. [3] Let r ∈ Nn, and u ∈ {0, 1}n such that r ≥ u. Then r − u = r\s if

and only if s = r∗ − (r − u)∗

Proof. Let I be an identity operator, and r ∈ Nn. Observe that (
∑n

i=0 Li)r = r∗,

and r = r∗ − Lr∗ = (I − L)r∗. It can be also written that (
∑n

i=0 Li)(I − L)r =

(I −L)(
∑n

i=0 Li)r = r, so (I −L)−1 = (
∑n

i=0 Li). Hence r − u = r\s = r−s+Ls =

r−(I−L)s if and only if (I−L)s = r−r − u if and only if s = (I−L)−1(r−r − u) =

(
∑n

i=0 Li)(r − r − u) = r∗ − (r − u)∗

Let Cb(k) := {s ∈ Nb :
∑

j=1 sj = k}, and Cr(k) := {s ∈ Cb(k) : s ≤ r}. For any

binary vector u ∈ {0, 1}m with the column sum q ∈ Nm, there exists a unique sequence

s = (s1, ..., sb) ∈ Nb satisfying the equality q − u = q\s by Lemma 4.4. It is clear that

a vector v is a permutation of u as described above whenever q − u = q − v. Hence,

the set Ps := {v ∈ {0, 1}n : v ≤ q, q − v = q\s} contains all the permutations of the

vector u. Then, the cardinality of the set Ps is
(
q
s

)
by the following Lemma 4.5 where(

q
s

)
:=
(
q1
s1

)
· · ·
(
qb
sb

)
Lemma 4.5. [3] Let q ∈ Nm, and s ∈ Nb such that s 6 q, and b := max

j
qj. Let

k =
∑

i si, then

∣∣∣{u ∈ Cq∧1(k) : q − u = q\s}
∣∣∣ =

(
q

s

)
(4.11)

Proof. Note that the sequence q = (q1, .., qm) contains qj number of terms equal to

j. For each term sj of the sequence s = (s1, ..., sb), one can choose sj positions out

of the qj possible coordinates where qi = j in the construction of a binary vector

u ∈ Cq∧1(k). Hence, one can find
(
qj
sj

)
possible ways to place 1′s for the j’th element

of the sequence s. If the same argument is repeated for all 1 ≤ j ≤ b, then it can

be found that there are
(
q1
s1

)(
q2
s2

)
...
(
qb
sb

)
=
(
q
s

)
possible ways to construct the vector u

satisfying q − u = q\s.
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Let the function N(p, q) be N(p, q) for a given pair of sequences (p, q) ∈ Nn×Nm,

and N(p, q) can be written in a recursive form by the following Theorem 4.6.

Theorem 4.6. [3] The number of (0-1)-matrices with row and column sums p ∈ Nn,

q ∈ Nm is given by

N(p, q) =
∑

s∈Cq(p1)

(
q

s

)
N(Lp, q\s) (4.12)

Proof. Let (p, q) ∈ Nn × Nm. Then

N(p, q) := N(p, q)
1
=

∑
u∈Cq∧1(p1)

N(Lp, q − u)

2
=

∑
s∈Cq(p1)

∑
u∈Cq∧1(p1)
q−u=q\s

N(Lp, q − u)

3
=

∑
s∈Cq(p1)

(
q

s

)
N(Lp, q\s)

In the first equality, p1 possible places are chosen to construct the first row of a binary

matrix. The second step divides the sum in the previous equation into disjoint classes

and one can always find a vector s ∈ Cq(p1) satisfying q − u = q\s by Lemma 4.4 for

any u ∈ Cq∧1(p1). Finally, the last equality follows from Lemma 4.5, and from the fact

that if (q − u) = q\s then N(Lp, q − u) = N(Lp, q − u) = N(Lp, q\s).

Miller and Harrison [3] suggested an enumeration algorithm based on Theorem

4.6 for (0,1)-matrices satisfying given margin sums, or equivalently, for bipartite graphs

with prescribed degree sequence. The details of the method are given in the algorithm

of Figure 4.4 below.
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Input: A pair (p, q) where (p, q) ∈ Nn × Nm and
∑n

i=1 pi =
∑m

j=1 qj

Output: The number of bipartite graphs realizing the input pair (p, q)

Storage: Lookup table storing intermediate results, initialized with N (0, 0) = 1

1: Check the lookup table, if N (p, q) was cached before, return it.

2: If there exists no binary matrix realizing the inputs, then cache the result, and

return 0

3: For each possible sequence s ∈ Cq(p1), compute N (Lp, q\s)

4: Evaluate the sum
∑

s∈Cq(p1)

(
q
s

)
N (Lp, q\s), and cache the result.

5: Return the result found in the previous step (4).

Figure 4.4. Enumeration of Bipartite Graphs with Prescribed Degree Sequences

Note that the fourth step of the algorithm can be factorized as follows:

∑
s∈Cq(p1)

(
q

s

)
N (Lp, q\s) =

∑
s∈Cq(p1)

(
qb
sb

)
· · ·
(
q2

s2

)(
q1

s1

)
N (Lp, q\s)

=
∑
sb

(
qb
sb

)
· · ·
∑
s2

(
q2

s2

)∑
s1

(
q1

s1

)
N (Lp, q\s)

Instead of checking all sequences s = (s1, ...sm) in the set Cq(p1), one can consider

only suitable sequences satisfying the Gale-Ryser conditions by combining the third and

fourth steps of the algorithm. Let j be the column index of a table, l̃ be the lower

bound, and ũ be the upper bound for a set of values. After choosing the first j − 1

elements of the sequence s = (s1, ..., sj−1,�, ...,�), the element sj can be picked from

the set Sj := {k ∈ N : l̃ ≤ k ≤ ũ} where l̃ := max{0, p1 −
∑j−1

k=1 sk − r∗j+1}, ũ :=

min{rj, p1 −
∑j−1

k=1 sk, g̃r}, g̃r :=
∑j

k=1 r
∗
k −

∑j+1
k=2 pk, and r = q\

(
s1, ..., sj−1, 0, .., 0

)
.

For each choice of sj, the Gale-Ryser condition, g̃r, guarantees the existence of a binary

matrix for the unfilled part.
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2 1 1

2

2

Table 1

2 1 1

2 0 1 1

2

Table 2

2 1 1

2 1 1 0

2

Table 3

2 1 1

2 1 1 0

2 1 0 1

Table 4

Figure 4.5. Construction of a Binary Matrix with Gale-Ryser Conditions

For example, let p = (2, 2) and q = (2, 1, 1), so the vector of occurrences q = (2, 1)

and q∗ = (3, 1) ( Table 1 in Figure 4.5 ). For j = 1, s1 ∈ {1} since l̃ = max{0, 1} = 1

and ũ = min{3, 2, 1} = 1, similarly, for the second column, s2 ∈ {1} because l̃ =

max{0, 1} = 1 and ũ = min{1, 1, 1} = 1. Therefore, s becomes (1, 1) for the first row.

If the same argument is proceeded, one can find s = (2, 0) for the second row. Thus,

there exists
(
q
s

)
=
(

2
1

)(
1
1

)
= 2 and

(
(2,1)\(1,1)

s

)
=
(

2
2

)(
0
0

)
= 1 possible choices for the first

and the second rows, respectively.

The construction of a valid (0,1)-matrix realizing the margin (p, q) is illustrated

in Table 3 and in Table 4 of Figure 4.5. However, if Gale-Ryser conditions are not

taken into consideration, then one can choose s to be (2, 0) ∈ Cq(2) for the first row so

the first row must be (0, 1, 1) but a valid binary vector for the second row cannot be

found (Table 2).

Notice that the algorithm given in Figure 4.4 traverses the pairs of vectors (u,v)

by initially starting with (p, q), and the set of all traversed pairs (u,v) form a tree

with a root node (p, q). Let D(p, q) denote the set of pairs (u,v) traversed by the

algorithm for a given initial input pair (p, q) where (p, q) ∈ Nn ×Nm. A pair (ξ,η) is

said to be a child of (u,v) if there exists s ∈ Cv(u1) such that η = v\s and Lu = ξ.

With this observation, the uniform sampling algorithm from the set of (0,1)-matrices

realizing the given margins (p, q) can be presented.
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Input: A pair (p, q) where (p, q) ∈ Nn × Nm and
∑n

i=1 pi =
∑m

j=1 qj

Output: A uniform sample from the set of (0,1)-matrices with margin sums (p, q)

Storage: Lookup table storing the number of matrices realizing the margins (u,v)

for each pair (u,v) ∈ D(p, q)

1: Initialize (u,v) with (p, q)

2: If (u,v) = (0,0), terminate with the set of constructed row vectors.

3: Select a child (Lu,v\s) ∈ D(p, q) of (u,v) with a probability proportional to

its count times the number of vectors r ∈ Cv∧1(u1) such that v − r = v\s.

4: Uniformly choose a row r ∈ Cv∧1(u1) from the set {ξ : v − ξ = v\s} at random.

5: Set (u,v) to (Lu,v − r).

6: Return to the step (2)

Figure 4.6. Uniform Sampling of Bipartite Graphs with Prescribed Degree Sequences

Miller and Harrison [3] showed that the computation time of the counting Algo-

rithm 4.4 is in O
(
nmb(logm)3

)
, and each sample can be generated by Algorithm 4.6

in O
(
nclogc) number of steps where a := max

i
pi, b := max

i
qi and c :=

∑
i

pi =
∑
j

qj.

4.2.2. Simple Graphs

The idea introduced in the previous section for bipartite graphs is transformed and

adapted for simple graphs, and a new uniform sampling and exact counting algorithm

is proposed for simple graphs with degree sequences. Recall that Gd is the set of all

simple graphs realizing the degree sequence d = (d1, ..., dn) ∈ Nn, and let BP be the

set consisting of all bipartite graphs. In this section, the degree sequence d will be

assumed to be non-increasing so di ≥ dj for all 1 ≤ i ≤ j ≤ n.
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Let ϕ : Gd → BP be a function mapping every simple graph G = (U ;E) ∈

Gd with labels {1, ..., n} to the bipartite graph G∗ = (U+, U−;E∗) where U+ =

{1+, 2+, ..., n+}, U− = {1−, 2−, ..., n−} and E∗ = {{i+, j−}, {i−, j+} : for all {i, j} ∈

E}. Let the image of the set Gd under the function ϕ be denoted by SBP(d,d).

Note that each element in the set SBP(d,d) is a bipartite graph with partite sets

{1+, ..., n+} and {1−, ..., n−}, and each graph is a realization of the degree sequence

{d+
1 , ..., d

+
n , d

−
1 , ..., d

−
n } where d+

i = d−i = di for all 1 ≤ i ≤ n. Hence, SBP(d,d) is a

proper subset of the set of bipartite graphs BP .

1

2

3 4

ϕ

ϕ−1

1+

2+

3+

4+

1−

2−

3−

4−

Figure 4.7. Illustration of the Function ϕ

Proposition 4.7. The map ϕ : Gd → SBP(d,d) is a bijective function.

Proof. Let G and H be isomorphic simple graphs with vertex set {1, ..., n}. Then the

function ϕ(·) maps the graphs G and H to bipartite graphs G̃ and H̃ with partite

sets {1+, ..., n+} and {1−, ..., n−}. If the edges {i+, j−} and {i−, j+} ∈ E(G̃), then

{i, j} ∈ E(G) by the definition of ϕ, so {i, j} ∈ E(H) since G ∼= H. Therefore, the

edges {i+, j−} and {i−, j+} are also elements of E(H̃) by the definition of ϕ. Similarly,

it can be seen that if {i+, j−} and {i−, j+} ∈ E(H̃), then {i+, j−} and {i−, j+} ∈ E(G̃)

by the same argument. Hence, ϕ is a well-defined function.

It is clear that ϕ is a surjective function, since ϕ[S] = SBP(d,d) by initial as-

sumption. Let ϕ(G) and ϕ(H) be isomorphic graphs in SBP(d,d), and relabel (if nec-

essary) the partite sets of the graphs ϕ(G) and ϕ(H) with labels {1+, 2+, ..., n+} and

{1−, 2−, ..., n−} such that the edges {i+, i+} and {i−, i−} are not elements of E(ϕ(G))

and E(ϕ(H)) for any i+ and i−.
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Then, the sets E(G) and E(H) consist of the edges {i, j} for every pair of the edges

{i+, j−} and {i−, j+} in E(ϕ(G)) or in E(ϕ(H)) by the definition of ϕ. Therefore,

{i, j} ∈ E(G) if and only if {i, j} ∈ E(H), so ϕ is also an injective function.

The cardinality of the sets Gd and SBP(d,d) are equal by Proposition 4.7 so the

rest of this section is devoted to counting the elements in the set SBP(d,d) rather than

the simple graphs realizing the degree sequence d = (d1, ..., dn) ∈ Nn.

Before presenting the enumeration algorithm for simple graphs with degree se-

quence, some definitions and notations are needed for the description of the method.

Let p = (p1, ..., pn) ∈ Nn be an ordered sequence with p1 ≥ p2 ≥ ... ≥ pn, and the

function ωx(·, ·) be defined by

ωx(p, k) = max({i ∈ N>0 :
∣∣{j : pj = x, and i ≤ j ≤ n}

∣∣ = k} ∪ {0})

for some x ∈ {p1, ..., pn}. In other words, the function gives the index of the k-th

element equal to x from the end of the finite sequence p, and gives 0, if the sequence

p does not contain k number of elements equal to x. The function ξ̃x(·, ·) is defined by

ξ̃x(p, k) = (p̃1, p̃2, ..., p̃n−1, p̃n) where

p̃i =


pi pi 6= x

pi − 1 pi = x, and i ≥ ωx(p, k)

pi pi = x, and i < ωx(p, k)

Let s = (s1, ..., sa) ∈ Na be a sequence such that s ≤ p where a = max
i
pi, and

let the function ξ(p, s) be defined by ξ̃a(· · · (ξ̃2(ξ̃1(p, s1), s2), · · · ), sa), which updates

the last sj elements equal to j of the sequence p = (p1, ..., pn) to pk − 1 for each term

sj ∈ {s1, ..., sa}. Since the function ξ(·, ·) is defined with the compositions of ξ̃j’s in

increasing order with respect to their indicies j, any coordinate of the sequence p can

be modified by only one function ξ̃j for some j ∈ {1, ..., a}.
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Example 4.8. Let p = (3, 2, 2, 1, 1), and s = (2, 1, 0) ≤ p = (2, 2, 1). Then, ξ(p, s) =

(3, 2, 1, 0, 0), since ξ̃1(p, s1) = ξ̃1((3, 2, 2, 1, 1), 2) = (3, 2, 2, 0, 0), and ξ̃2((3, 2, 2, 0, 0), s2) =

ξ̃2((3, 2, 2, 0, 0), 1) = (3, 2, 1, 0, 0).

By Proposition 4.7, for each labeled simple graph with the degree sequence d =

(d1, ..., dn), there is a corresponding bipartite graph in the set SBP(d,d), and each

bipartite graph in SBP(d,d) can be represented by a symmetric binary matrix with

zero-diagonal elements and margin sums equal to the degree sequence d = (d1, ..., dn).

Thus, a simple graph with a given degree sequence can be generated by constructing

such a binary matrix with the same row and column sums.

2 2 2 1 1

2

2

2

1

1

Unfilled Table

2 2 2 1 1

2 0 0 1 0 1

2 0

2 1

1 0

1 1

Partially Filled Table

2 2 2 1 1

2 0 0 1 0 1

2 0 0 1 1 0

2 1 1

1 0 1

1 1 0

Partially Unfilled Table

2 2 2 1 1

2 0 0 1 0 1

2 0 0 1 1 0

2 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

Filled Table

Figure 4.8. Construction of a Symmetric Binary Matrix with Zero-Diagonals

For instance, in Figure 4.8, a construction of a simple graph with the degree

sequence (2, 2, 2, 1, 1) is illustrated. The first row is chosen as u = (0, 0, 1, 0, 1), so

the first column must be also equal to u = (0, 0, 1, 0, 1). Then, the margin sums

are updated to L(d − u) = (2, 1, 1, 0), and the same procedure can be repeated until

the table is completely filled. Let κ(d) be the number of simple graphs realizing a

given degree sequence d. Note that if any permutation v of a chosen row vector

u satisfies the equality d− v = d− u, then κ(L(d − u) = κ(L(d − v)), in other

words, the possible number of binary matrices for the unfilled part of the table is

not affected by permuting the positions of 1’s situated in the locations whose column

sums are equal. The first entry of a chosen vector u must be 0 due to the structure

of the matrix being constructed, so the column sum sequence can be considered as

r := (0,Ld) = (0, d2, ..., dn) instead of the vector d at each step.
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By Lemma 4.4, for a given pair of vectors (u,d) ∈ {0, 1}n ×Nn holding the inequality

u ≤ r := (0,Ld), a sequence s ∈ Na satisfying r − u = r\s can be found where

a := maxi ri. Therefore, the number of such permutations of a chosen vector u can be

computed by
(
r
s

)
=
(
r1
s1

)
· · ·
(
ra
sa

)
similar to the idea introduced in the previous section.

Hence, the number of all possible vectors for a row or a column can be computed

by determining the different N-valued vectors s ∈ Cr(d1). However, after determining

a vector s, the row sum sequence must be also updated since the table is symmetric.

Note that the vector v := d− ξ(d, s) is a permutation of u satisfying L(d− u) = r\s

since L(d− v) = L(d− (d− ξ(d, s))) = Lξ(d, s) = ξ(Ld, s) = r − u=L(d− u), so

ξ(Ld, s) = r\s, and κ(ξ(Ld, s)) = κ(L(d− u)). Therefore, the row sums sequence d

can be updated to ξ(Ld, s) after each step for a chosen vector s ∈ Cr(d1) in order to

not violate the non-increasing order of the row sums.

Now the recursive formula to compute the number of realizations of a given degree

sequence can be presented.

Theorem 4.9. The number of simple graphs with a given non-increasing degree se-

quence d = (d1, ..., dn) ∈ Nn, is given by K(d,d) := κ(d), and the function K(·, ·) is

defined by

K(d,d) =
∑

s∈Cr(d1)

(
r

s

)
K(ξ(Ld, s), r\s)

where the sequence r := (0,Ld) = (0, d2, ..., dn).
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Proof. Let d = (d1, ..., dn) ∈ Nn, then

K(d,d) = κ(d)
1
=

∑
u∈Cr∧1(d1)

κ(L(d− u))

2
=

∑
s∈Cr(d1)

∑
u∈Cr∧1(d1)
r−u=r\s

κ(L(d− u))

3
=

∑
s∈Cr(d1)

∑
u∈Cr∧1(d1)
r−u=r\s

K(L(d− u),L(d− u))

4
=

∑
s∈Cr(d1)

(
r

s

)
K(ξ(Ld, s), r\s)

In the first equality, d1 possible places other than the first cell are chosen to construct

the first row or column of a binary matrix. In the second line, as it is applied in the proof

of Theorem 4.6, the sum in the previous equality is divided into disjoint subsets based

on the fact that for any u ∈ Cr∧1(d1) there exists s ∈ Cr(d1) satisfying r − u = r\s by

Lemma 4.4. The third line follows from the definition of the function K(·, ·). Note that

Ld = Lr, and L(r − u) = r − u since the first elements of the sequences r and u are

zero so K(L(d−u),L(d− u)) = K(L(d−u),L(r − u)) = K(L(d−u), (r − u)). The

last line follows from Lemma 4.5, and from the fact that the expression κ(L(d− u)) =

κ(L(d− v)) holds if the permutation v of the vector u satisfies the equality L(d− u) =

L(d− v). The vector v defined by d − ξ(d, s) is such a permutation of the vec-

tor u, because L(d− v)=L(d− (d− ξ(d, s)))=Lξ(d, s)=ξ(Ld, s)=L(d− u). Hence,

K(L(d− u), (r − u)) = K(ξ(Ld, s), r − u) = K(ξ(Ld, s), r\s) by Lemma 4.4.

The following algorithm is based on the idea of Theorem 4.9, and computes the

exact number of realizations of a given degree sequence.
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Input: A graphical degree sequence d = (d1, ..., dn) ∈ Nn

Output: The number of simple graphs realizing the given sequence d

Storage: Lookup table storing intermediate results, initialized with K(0, 0) = 1

1: Check the lookup table, if K(d,d) was cached before, return it.

2: If there exists no simple graph realizing the input sequence, cache the result,

and return 0

3: For each possible sequence s ∈ Cr(d1), compute the value of K(ξ(Ld, s), r\s)

where r = (0,Ld)

4: Evaluate the sum
∑

s∈Cr(d1)

(
r
s

)
K(ξ(Ld, s), r\s), and cache the result.

5: Return the result found in the previous step (4).

Figure 4.9. Exact Enumeration of Simple Graphs with Prescribed Degree Sequences

As it is described for the algorithm in Figure 4.4, the third and fourth steps can

be combined, and only the sequences satisfying slightly modified Gale-Ryser conditions

can be considered. Similarly, Algorithm 4.9 traverses the nodes of a tree by starting

from the root node (d, d̄). Let S(d, d̄) be the set of all pairs (η, η̄) traversed by

Algorithm 4.9 where (d, d̄) is the root node. Note that a pair (η,η) is a child of (h,h)

if η = ξ(Lh, s) for some s ∈ CLh(h1). The following sampling algorithm allows one to

uniformly draw samples from the set of all realizations of a given degree sequence.
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Input: A graphical degree sequence d = (d1, ..., dn)

Output: A uniformly drawn sample from the set of all zero-diagonal binary matri-

ces satisfying the margin (d,d)

Storage: Lookup table storing the results of K(η,η) for each pair (η,η) ∈ S(d,d)

1: Initialize (η,η) with (d,d)

2: If (η,η) = (0,0), terminate with the set of constructed rows.

3: Select a child (ξ(Lη, s), r\s) ∈ S(d,d) of (η,η) with a probability proportional

to its count times the number of vectors u ∈ Cr∧1(η1) such that r − u = r\s,

where r = (0,Lη).

4: Uniformly choose a row u ∈ Cr∧1(η1) from the set {u : r − u = r\s} at random.

5: Set (η,η) to (ξ(Lη, s), r\s).

6: Choose an index position of the vector u

7: Return to the step (2).

Figure 4.10. Uniform Sampling of Simple Graphs with a Given Degree Sequence

Notice that the uniform sampling Algorithm 4.10 returns a symmetric binary

matrix with zero-diagonals as an output for a given graphical degree sequence, and an

output matrix M = (mij) can be easily converted into a simple graph by placing edges

between the vertices i and j for each entry mij or mji equal to 1.
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5. APPLICATIONS AND SIMULATIONS

In this chapter, the algorithms presented in the previous sections are tested in

several examples to illustrate their applications in different fields.

5.1. Enumeration of Simple and Bipartite Graphs with Given Degree

Sequences

For a given degree sequence d = (d1, ..., dn), the natural question is that how

many simple graphs are there realizing the degree sequence d = (d1, ..., dn). However,

there is no known simple formula so far to count the number of graphs in Gd.

In 1978, Bender and Canfield [38] gave the first asymptotic formula for the case

where max
i
di is bounded. Later, the constraints on the degrees were improved, and

better asymptotic formulas were suggested [39, 40]. For instance, in 1991, McKay and

Brendan [41] showed that if dmax = o(M
1/3
1 ), then

|Gd| ∼ M1!

(M1

2
)!2

M1
2 d1! · · · dn!

exp

(
M2

3

6M3
1

+
M4

2

4M5
1

− M2
2M3

2M4
1

− M2
2

4M2
1

− M2

2M1

+O

(
d3
max

M1

))

as M1 →∞, where dmax = maxi di, [d]j = d(d− 1) · · · (d− j + 1), and Mj =
∑
i

[di]j.

As it is described in the previous Section 4.2.2, Theorem 4.9 can be used to

exactly compute the number of simple graphs in the set Gd. In the tables below, the

estimated results found by the importance sampling technique in Subsection 4.1.1 and

the exact values computed by the proposed method are given for some regular and

arbitrary degree sequences in order to compare the two different algorithms.



47

Table 5.1. Enumeration of Regular Graphs

n k-regular Importance Sampling Proposed Method

4 3-regular 1.0 ± 0.0 1

6 3-regular 70,625 ± 0.895 70

8 4-regular 19.133,298 ± 325,706 19.355

10 4-regular (6,6373 ± 0,1149) ×107 66.462.606

12 9-regular (3.5896 ± 0,1248) ×107 34.944.085

14 9-regular (6,4632 ± 0,2664) ×1015 6.551.246.596.501.035

16 11-regular (1,4806 ± 0,0765) ×1020 155.243.722.248.524.067.795

18 11-regular (6,0905 ± 0,3299) ×1030 5.997.229.769.947.050.271.535.917.422.040

In Table 5.1, the results for some regular graphs are listed, and Table 5.2 contains

the number of graphs satisfying the degree sequence indicated in its first column. As

it is shown in the tables, the estimated results are very close to their exact values,

and only 1000 samples are used in finding the approximate values with importance

sampling algorithm.

Table 5.2. Enumeration of Graphs with Arbitrary Degree Sequences

Degree Sequence Importance Sampling Proposed Method

(4,2,5,2,2,3) 3.0039± 0.0095 3

(2,4,2,4,5,4,1) 11.9892± 0.0570 12

(2,2,3,1,7,2,5,3,5) 212.5956± 5.1241 215

(4,6,6,5,2,1,3,8,4,1,4) (1, 17523± 0, 02909)× 105 117.697

(1,4,1,5,9,2,6,5,3,5,8,9) (9, 386± 0, 726)× 103 9.276

(5,3,3,4,4,2,2,3,6) (29, 959± 0, 342)× 103 29.705

(7,5,4,8,4,3,5,2,4,4) (1, 38785± 0, 03269)× 105 139.370
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5.2. Hypothesis Testing

In ecology, researchers use co-occurence tables to analyze the patterns of species in

different ecological locations, which are often used to indicate the presence or absence of

species on certain ecological locations. For instance, Table 5.3 shows the distribution

of 17 reptiles species in Tasmania and the Bass Strait area [42] where 1′s represent

the occurrence of species on the corresponding islands. Only the part of the table

containing islands and groups of islands were considered and the remaining part was

excluded. Columns and rows of the table correspond to reptile species and names of

locations which they live on, respectively.

Table 5.3. Distribution of Island Reptile Species In Southern Australia
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Pedra Branca Island 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Maatsuyker Island 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Tasmania 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

Albatros Island 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1

Furneaux Group 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Curis Island 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1

Kent Group 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0

Hogan Group 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0

Rodondo Island 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0

Brisbane-Adelaide 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

Species usually share their ecological areas with other species, and they are pos-

itively or negatively interact with them.
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For instance, they may compete for the same food resource in a certain area, or co-

operate to benefit from each others behaviors like mutualistic relationships. These

interactions among different species may have caused the emergence of a particular

pattern in an ecological environment, but this distribution may have been also oc-

curred completely by chance. In other words, the pattern of species could not be much

different than what would be expected if there was no interactions among them. Robert

and Stone [43] proposed a simple test statistic which is given by

S̄2 =
1

n(n− 1)

∑
i 6=j

s2
ij

where n is the number of species, and S = (sij) = MTM , and M is a m×n occurrence

matrix. Intuitively, the statistic measures the interaction between the distribution of

different species over a set of certain ecological locations. The lower value of S̄2 implies

that the pattern of a species has not much influence on the distribution of the other

species. Similar to the study of Chen et al. [2], the statistic can be used to test the null

hypothesis that the reptile species are distributed randomly on the islands. Note that

the observed statistic of the co-occurrence table is 5.4485. To carry out the hypothesis

test, 100.000 samples satisfying the margin sums of the table are generated from the

uniform distribution, and the histogram of the test statistic is depicted in Figure 5.1.
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Figure 5.1. Histogram of the Test Statistic S2 for 100.000 Samples
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The red dashed line in Figure 5.1 indicates the value of S̄2 for the reptile species

table. The SIS and exact sampling algorithms described in Subsections 4.1.2 and

4.2.1 estimated the p-value to be 0.09×10−3, and 0.02×10−3, respectively. Hence, the

results demonstrate that the observed statistic is not consistent with the null hypothesis

and there is enough evidence to reject the null hypothesis in favor of the alternative

hypothesis.

5.3. Network Analysis

Graph measures are important elements in the network analysis, which are gen-

erally used to characterize the structural properties of a graph. Any feature of an

observed graph can be compared with the features of an ensemble of graphs sharing

the same degree sequence so that deviation of the observed graph’s feature from the

mean can be determined. Consider the friendship network in Figure 1.1 which consists

of 23 vertices of degrees ranging from 2 to 14, and note that the degree sequence of the

graph does not admit the power-law distribution.
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Figure 5.2. Degree Frequencies of the Friendship Network of Freshman Students

Clustering coefficient is one of the widely used metrics, which intuitively measures

how connected are the neighbors of vertices in the graph.
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The metric has different variants, and local clustering coefficient is a version proposed

by Watts and Strogatz in 1998 [10]. It is the ratio between the number of edges among

the neighbors of a vertex, and the largest possible number of edges among them. The

formal definition of local clustering coefficient of a vertex v is given by

cc(v) :=
|{{u,w} ∈ E(G) : u,w ∈ N (v)}|(

k
2

)
where k = |N (u)|, and the clustering coefficient of the whole graph is the mean of local

clustering coefficients of vertices of the graph.

cc(G) =
1

N

∑
v∈V (G)

cc(v)

Figure 5.3 below shows the histogram of local clustering coefficients of graphs

sharing the same degree sequence with the friendship network, and the red dashed line

indicates the clustering coefficient of the friendship network, which is equal to 0, 6046.

The friendship network exhibits high clustering coefficient with respect to the other

generated graphs.
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Figure 5.3. Clustering Coefficients

1.75 1.80 1.85 1.90 1.95 2.00 2.05
Shortest path

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 

S
a
m

p
le

s

Figure 5.4. Avg. Shortest Path Lengths



52

The average shortest path length is another important characteristic of networks

which is defined by

asp(G) =
∑

u,v∈V (G)

d(u, v)

n(n− 1)

where n := |V (G)|, and d(u, v) is the shortest path length between the vertices u and

v. A vertex u ∈ V (G) is reachable from another vertex v ∈ V (G), if there exists a path

between u and v, and if the vertex u is not reachable from v, d(u, v) = 0. Unlike the

small-world networks exhibiting small average shortest path length along with high

clustering coefficient, the average shortest path length of the friendship network is

2.0435, and it is higher than the expected value of the average shortest path of graphs

with the same degree sequence.
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Figure 5.5. Assortativity Coefficients

Assortativity coefficient quantifies the tendency of vertices to be adjacent to other

vertices of similar degrees, which is simply the Pearson correlation coefficient of degrees

of vertices connected to each other. In 2002, Newman [44] introduced the assortativity

coefficient, and showed that many social networks admit assortative mixing, which

means that there is a correlation between vertices of similar degree.
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The histogram in Figure 5.5 points out that the random graphs generated by the same

degree sequence shows mostly a disassortative pattern like technological and biological

networks, but the assortativity coefficient of the friendship network is −0.006651, and

it almost shows no assortative mixing pattern.

The method developed in Section 4.2.2 are used to obtain uniformly distributed

simple graphs, and 10.000 samples are generated for each experiment. Similarly, other

graph measures can be used to interpret the friendship network, but it can be roughly

said that the observed network shows a very different characteristic than the graphs

with the same degree sequence.
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6. CONCLUSION

In this thesis, various sampling approaches for simple and bipartite graphs were

investigated, and they were mainly classified into two parts. The first part was devoted

to Markov chain Monte Carlo methods, and a well-known edge switching based Markov

chain method was introduced for simple graphs. It was proved that the chain converges

to the uniform distribution over all realizations of a given degree sequence, and the

chain was used for obtaining uniformly distributed samples.

In the second part, direct construction methods were considered for simple and

bipartite graphs. Since directly generating uniformly distributed samples is a compli-

cated task, various Monte Carlo methods were applied to the problem and were used

to estimate the properties of the uniform distribution. The importance sampling al-

gorithm proposed by Blitzstein and Diaconis [1] and sequential importance sampling

technique suggested by Chen et al. [2] were investigated for simple and bipartite graphs.

A new uniform sampling and exact counting algorithm was developed for labeled simple

graphs based on the work of Miller and Harrison [3].

The applications of the presented algorithms were illustrated in several examples.

The proposed method in Subsection 4.2.2 was used to exactly count the number of

graphs satisfying arbitrary graphical degree sequences. A hypothesis test was carried

out for the ecological network in Table 5.3 formed by island reptile species in Australia,

and the null hypothesis that the reptile species are distributed randomly on the islands

was rejected. The friendship network of freshman students in Figure 1.1 was analyzed,

and it was shown that the network admitted a very different characteristic than the

most of the graphs sharing the same degree sequence with the network.

The main disadvantage of the edge switching Markov chain is its mixing time,

and it is still an open question waiting to be answered. The exact counting and

sampling methods described in Subsections 4.2.1 and 4.2.2 mostly run slower than the

approximate methods.
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However, the main strength of these algorithms stems from their exactness, and the

approximate methods require a large number of samples for better estimations. In the

future, faster algorithms may be designed for the generation of uniformly distributed

simple and bipartite graphs realizing the given degree sequences.
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